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Abstract—Parallel and distributed computing (PDC) has found
a broad audience that exceeds the traditional fields of computer
science. This is largely due to the increasing computational
demands of many engineering and domain science research
objectives. Thus, there is a demonstrated need to train students
with and without computer science backgrounds in core PDC
concepts. Given the rise of data science and other data-enabled
computational fields, we propose several data-intensive pedagogic
modules that are used to teach PDC using message-passing
programming with the Message Passing Interface (MPI). These
modules employ activities that are common in database systems
and scientific workflows that are likely to be employed by
domain scientists. Our hypothesis is that using application-driven
pedagogic materials facilitates student learning by providing the
context needed to fully appreciate the goals of the activities.

We evaluated the efficacy of using the data-intensive pedagogic
modules to teach core PDC concepts using a sample of graduate
students enrolled in a high performance computing course at
Northern Arizona University. In the sample, only 30% of students
have a traditional computer science background. We found
that the hands-on application-driven approach was generally
successful at helping students learn core PDC concepts.

Index Terms—Computer Science Education, Data-Intensive
Computing, High Performance Computing, Parallel and Dis-
tributed Computing

I. INTRODUCTION

There are numerous challenges to teaching parallel and
distributed computing (PDC). While there is little consensus
on the best way to teach PDC concepts, numerous studies
have found that hands-on approaches are highly effective [1]–
[4]. Hands-on approaches allow students to design and write
software to be executed on a given hardware platform. The
execution of programs are analyzed through various perfor-
mance measures, and through this exercise, students learn key
PDC concepts and skills.

Many scientific enterprises require analyzing large volumes
of data. There is an increased demand for PDC to be em-
ployed for solving data-intensive problems. High performance
computing (HPC) is not just a topic studied by computer sci-
entists that touch on fields such as systems, systems software,
architecture, algorithms, and other areas. PDC is exploited by
domain scientists and other users such that they can carry
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out their research. Thus, many scientists and engineers need
skills in PDC which are motivated by real-world problems.
In response, computer science departments have developed
curriculum for the fields of Big Data, data science, machine
learning, and other data-focused areas [5], [6]. Furthermore,
the Big Data topical area has been incorporated into the
NSF/IEEE-TCPP PDC curriculum initiative [7].

We outline the motivating context for this work. The School
of Informatics, Computing, and Cyber Systems at Northern
Arizona University (NAU) has four MS graduate programs,
and has a multidisciplinary PhD program in Informatics and
Computing. The PhD program is very diverse as it primarily
trains computer scientists, and electrical engineers in addition
to domain scientists in biology, ecology, and other subfields of
these disciplines. Consequently, there is a demonstrated need
to train domain scientists in PDC [5], such that they obtain
the necessary skills to tackle cutting-edge research questions.

There is much debate regarding whether to use a cluster for
pedagogic purposes. Some research in high performance com-
puting pedagogy has motivated using simulation [3], [4], [8]–
[11] to avoid drawbacks of using clusters, such as platform-
specific configurations. Also, as described in Tanaka et. al. [4],
instructors may also spend a significant amount of time trou-
bleshooting student job script submissions to clusters, working
with the cluster administrator and performing other duties that
are orthogonal to teaching core PDC concepts. In short, using
the cluster environment has several drawbacks.

While we are cognizant of the abovementioned challenges
with using the cluster environment, these drawbacks must be
weighed against the benefits of using clusters. We outline some
of these benefits as follows:
1) Graduate students are the target demographic of the peda-

gogic materials. In our context at NAU, a substantial frac-
tion of graduate students in the Informatics & Computing
PhD program (and other domain science graduate pro-
grams) will need to use the university’s cluster, Monsoon,
to carry out their research. Consequently, many students
have experience using the cluster, or will be required to
use it to complete their academic programs.

2) Many research-intensive universities have access to clus-
ters, and institutions in the United States have access to
computational resources that can be used for teaching



purposes, such as XSEDE [12]. Hands-on experience with
clusters is very valuable for students that require parallel
processing to carry out their research. Furthermore, having
PDC skills in addition to experience using the cluster
environment can lead to alternative career paths for both
computer and domain scientists.

3) The drawbacks of using a cluster are not insurmountable
when the course scope is limited to core concepts, such as
parallelism, scalability, basic communication patterns, and
locality (i.e., concepts most useful to students).

Students enrolling in HPC courses may have diverse ed-
ucational backgrounds (in this paper, this refers to students
with and without traditional computer science backgrounds).
To address this population, this paper presents data-intensive
pedagogic modules that teach distributed-memory computing
using MPI [13]. This paper makes the following contributions:
• We motivate the use of data-intensive pedagogic modules in

PDC graduate-level education.
• We present five pedagogic modules that focus on data-

intensive applications. These applications are used to capture
the interest of students with and without a computer science
background, and serve to teach core PDC concepts.

• We evaluate the efficacy of the pedagogic modules using
students in an HPC class at Northern Arizona University.
Paper organization: Section II presents related work, Sec-

tion III presents an overview of the modules, Section IV
evaluates module efficacy, and Section V concludes the paper.

II. RELATED WORK

PDC courses are often developed around an instructor’s
teaching and research interests and the goals of an institu-
tion’s academic programs. Many instructors have reported that
hands-on approaches which incorporate programming activi-
ties into curricula are key to mastering PDC concepts [1]–
[4]. Some authors advocate for using compute clusters in
computer science curriculum [14]–[16]. To avoid the draw-
backs of using clusters (e.g., they are a shared resource), some
instructors have proposed requiring each student use their own
personal low-cost portable cluster [17]–[19]. Other scholars
have suggested employing simulation instead of clusters to
teach PDC [3], [4], [8]–[11].

In addition to the debate around using clusters, there are
other concerns related to teaching PDC. For instance, emerging
fields such as Big Data require practitioners to use new tools
and technologies such as Hadoop and Spark [20]. Cloud
computing is another area that is relevant for data scien-
tists [21]. PDC courses may incorporate these emerging topics
into their curriculum. Other efforts have examined teaching
PDC to domain science students who do not have a traditional
computer science background, but require proficiency in PDC
to carry out their research objectives [5], [22].

Similarly to the abovementioned related work, we target the
cluster environment. Additionally, our pedagogic materials are
designed to target the interests of both computer scientists and
those in other fields, such as the domain sciences.

III. DATA-INTENSIVE PEDAGOGIC MODULES

At the time of writing, we have released five modules
that are publicly available online [23]. The modules are
scaffolded and should be completed in sequence. The mod-
ules focus on teaching distributed-memory parallel computing
using MPI [13]. We describe the overall goals and the modules
below, but refer the reader to the website for more detail [23].

A. Overall Goals

The major topics of the modules are as follows: parallelism,
scalability, locality of reference, basic communication patterns,
and reasoning about performance beyond asymptotic time
complexity. The modules use MPI, as it is the workhorse
of HPC. This provides exposure to the low-level details of
distributed-memory computing that are beneficial for both
computer and domain science students. The module activities
require a minimal to moderate amount of time to compute on a
cluster, such that students are able to quickly obtain resources
and do not need to wait long before obtaining results.

Table I summarizes the student learning outcomes of each
of the five pedagogic modules. The learning outcomes are
classified into one of three Bloom taxonomic levels [24] that
characterize the transition from concrete to abstract concepts.

Table II summarizes MPI primitives used in the modules.
We note that these are a basic guideline, as some modules
leave aspects of communication to the discretion of the
student. This allows for developing creative solutions to the
problems and bolsters in-class discussions regarding different
algorithmic design decisions.

B. Module 1: MPI Communication

The first module describes basics of MPI communication,
and students are introduced to the following MPI primi-
tives: MPI_Send, MPI_Recv and some of their variants,
MPI_Isend, MPI_Wait, and depending on how they de-
velop their solutions, they may use MPI_Bcast.

There are three activities: ping-pong communication, com-
munication in a ring, and random communication. While the
first two activities are straightforward, random communication
requires students determine how to receive from an unknown
sender without using MPI_ANY_SOURCE. Then the module
requires implementing a solution using MPI_ANY_SOURCE.
Students compare the implementations, and reflect on differ-
ences, such as ease of programmability and efficiency.

C. Module 2: Distance Matrix

Application motivation: Computing the distances between
pairs of points (or feature vectors) is common in many data-
intensive applications. The DBSCAN [25] clustering algo-
rithm, k-nearest neighbor searches [26], and performing join
operations in databases [27] are a few example applications
that require computing distances between pairs of points. Also,
a variant of the problem is used in the k-means algorithm [28],
which is the topic of Module 5. Given the broad range of
uses for computing a distance matrix, many students may find
utility in this exercise outside of the course.



TABLE I
SUMMARY OF STUDENT LEARNING OUTCOMES FOR EACH OF THE FIVE PEDAGOGIC MODULES. THE OUTCOMES ARE ASSIGNED ONE OF THREE BLOOM

TAXONOMIC LEVELS: A-APPLY, E-EVALUATE, AND C-CREATE.

Student Learning Outcome Module
1 2 3 4 5

1 Implement several canonical MPI communication patterns. A - - - -
2 Understand blocking and non-blocking message passing. A - - - -
3 Examine how blocking message passing may lead to deadlock. A - - - -
4 Understand MPI collective communication primitives. - A E E E
5 Understand how how data locality can be exploited to improve performance through the use of tiling. - E - - -
6 Understand the performance trade-offs between small and large tile sizes. - E - - -
7 Utilize a performance tool to measure cache misses. - A - - -
8 Understand how various algorithm components scale as a function of the number of process ranks. - E E E C
9 Understand how different input data distributions may impact load balancing. - - E - -

10 Discover how compute-bound and memory-bound algorithms vary in their scalability. - E E E E
11 Understand common patterns in distributed-memory programs (e.g., alternating phases of computation and

communication).
A A E A C

12 Reason about performance based on algorithm characteristics (i.e., beyond asymptotic performance). - - E E E
13 Reason about performance based on communication patterns and volumes. - - E - E
14 Reason about resource allocation alternatives. - - A E C
15 Reason about how the algorithms can be improved beyond the scope of the module. - - C C C

TABLE II
USE OF MPI PRIMITIVES IN THE MODULES. SINCE MODULES ARE

OPEN-ENDED, SOME PRIMITIVES MAY OR MAY NOT BE EMPLOYED IN A
GIVEN MODULE. R-REQUIRED, N-NOT REQUIRED BUT MAY BE

EMPLOYED.

MPI Primitive Module
1 2 3 4 5

MPI Send R - N - -
MPI Recv R - N - -
MPI Isend R - - - -
MPI Wait R - - - -
MPI Bcast N - - - -
MPI Send and MPI Recv variants N - N - -
MPI Scatter - R - - N
MPI Reduce - R R R -
MPI Get count - - N - -
MPI Allreduce - - - - N

In this module, students compute the N×N distance matrix
on 90 dimensional data points, where N is the number of
points. The students are exposed to the MPI_Scatter and
MPI_Reduce primitives. After implementing the standard
distance matrix that uses a row-wise data access pattern,
the module requires implementing a solution that uses tiling.
The students compare the performance of their row-wise vs.
tiled solutions, where the latter should outperform the former
due to better locality which yields higher cache hit rates.
Finally, the students measure cache miss rates using the perf
performance tool and reason about the performance of their
solutions.

In this module, students also learn about compute-bound
algorithms that achieve high parallel efficiency. Additionally,
students will need to think about locality, thereby introducing
basic computer architecture concepts.

D. Module 3: Distribution Sort

Application motivation: Sorting is a subroutine in many
algorithms [29], and data-intensive workloads. Sorting is used
in database systems [30], such as computing top-k database
queries [31], and is employed in scientific applications [32],

[33]. Sorting is a good vehicle for teaching several fundamen-
tal PDC concepts, and is often used in introductory computer
science curricula [34].

This module exposes students to a bucket sort [35], which
is a sorting technique that performs well in distributed-
memory. The module requires using MPI_Send and
MPI_Recv (and/or its variants), MPI_Reduce, and possibly
MPI_Get_count, depending on the solution.

The first activity has each MPI rank be assigned uniformly
distributed unsorted data, where the data is assumed to be
distributed on the ranks before any processing begins. Each
rank is required to sort a single bucket corresponding to a data
range, where buckets are of equal width. The ranks perform
a communication phase to scatter their local unsorted data to
the other ranks. After all ranks receive their data, they perform
the sort operation. In the module, the data stays distributed at
each rank to reflect that large datasets may exceed the main
memory capacity of a single node.

The second activity is identical to the first activity, except
the data is exponentially distributed. This means that some
ranks will have more data to scatter and sort than others.
From this activity, the students learn about data-dependent
workloads and resulting load imbalance.

To remedy the load imbalance problem, the third activity
requires using a histogram-based approach. In this approach,
one rank generates a histogram of its local data and then
divides the data into unequal-sized buckets (in contrast to the
equal-sized buckets in the first and second activities). This
remedies the load imbalance that occurs when using equal-
sized buckets, and overall performance is similar to that in the
first activity.

In summary, this module teaches students about data-
dependent workloads and load imbalance. Students learn that
the sequential program does not require scattering the data, and
that parallelism incurs non-negligible communication over-
head. Furthermore, because sorting is memory-bound, the
scalability of the algorithm is not as high as the compute-



bound algorithm presented in Module 2.

E. Module 4: Range Queries

Application motivation: Range queries are used in
database systems and in scientific applications [36]. An ex-
ample 2-dimensional range query is as follows: “Return all
asteroids with a light curve amplitude between 0.2–1.0 and
a rotation period between 30–100 hours.” Range queries are
often used as a subroutine in data analysis workflows that
require comparing the similarity of feature vectors.

Range queries search a space defined by a minimum bound-
ing box which find all points/feature vectors within that region.
This module is not focused on exposure to new MPI primitives,
and requires the use of MPI_Reduce.

In the first activity, the module assumes that the input
dataset and query dataset (the ranges that are searched) are
stored on each rank before any processing begins. Each rank
searches the input dataset using its assigned set of queries. The
module requires implementing a brute-force implementation
that does not use spatial indexing methods (e.g., kd-tree [37],
R-tree [38], or quad-tree [39]) to prune the search. The
module requires examining the strong scaling behavior of the
algorithm using fixed input and query dataset sizes.

In the second activity, the module supplies an R-tree [38]
data structure that is used to index the input dataset before
querying begins. This data structure limits the search distance
of the queries such that fewer distance calculations need to
be computed, which improves the overall efficiency of the
algorithm compared to the brute-force approach.

Comparing the first and second activities, the students learn
that the brute-force algorithm has better scalability because
it is inherently compute-bound. When employing the R-tree,
scalability decreases compared to the brute force approach, as
the algorithm has a higher ratio of memory accesses to distance
calculations. Despite worse scalability, the R-tree implemen-
tation is much more efficient than the brute-force algorithm.
Consequently, students learn that more efficient/sophisticated
algorithms often have worse scalability than their simple
(inefficient) counterparts.

The third activity requires experimenting with running the
R-tree implementation using different node counts, and having
students devise their own experiment. Their invented experi-
ment may include using dedicated or shared compute nodes,
varying the number of nodes, and changing the allocation of
tasks to nodes. Ideally, students will learn that deploying p
ranks on 1 node performs worse than deploying p ranks on 2
nodes, and that using multiple nodes exploits more aggregate
memory bandwidth to improve performance. Students learn
that memory bandwidth is an important resource.

F. Module 5: k-means Clustering

Application motivation: The k-means clustering algo-
rithm [28] is probably the most popular clustering algorithm
given its simplicity and characteristics.

The naı̈ve k-means algorithm [40] is an unsupervised ma-
chine learning technique that takes as input a dataset of points

and a number of clusters, k, and as output assigns each point
to one of k clusters. The algorithm is iterative in nature, and
terminates when two centroids (cluster centers) do not change
positions between two consecutive iterations. At each iteration,
each point is assigned to its closest centroid by computing the
distance between the point and all k centroids. Each centroid
is then assigned a set of points, and its position is updated to
reflect the mean positions of these points.
k-means is an interesting distributed-memory algorithm as

it has alternating phases of synchronous computation and
communication. Furthermore, depending on k and the data
dimensionality, the algorithm may be bound by either com-
putation or communication. The module prescribes a single
2-dimensional input dataset, and requires each rank to be
assigned a subset of the data (e.g., each rank is assigned
N/p points where N is the number of points and p is the
number of processes/ranks). For a given iteration, each rank
can independently compute the distances between its subset
of the data points and the k centroids; however, the centroid
locations need to be updated using global knowledge. In
principle, this requires each rank to know the assignment of
all points to their respective centroids.

To communicate this global information, the module
presents two options that can be used. The first option ex-
plicitly describes the assignment of points to centroids, and
the second option exploits weighted means. While the first
option is more explicit, it requires significant communication
overhead. The second (less explicit) option is more efficient
and requires minimal communication.

The module requires students to understand how perfor-
mance varies as a function of k by examining the time spent
computing distances between points and centroids, and the
time required for communication. Students learn that when k is
large, the total time is dominated by computation, whereas on
low values of k, the total time is dominated by communication.
Also, students will discover that using multiple compute nodes
is not advantageous when k is low.

G. Ancillary Modules

We also provide two ancillary modules. One module pro-
vides an introduction to the SLURM batch scheduler. The
other module provides warmup exercises that gently introduce
students to MPI primitives. These exercises can be used as in-
class activities. For instance, during class, students can solve
these exercises in groups, or the entire class can program the
solution with the instructor.

IV. EVALUATION

A. Methodology

The first author of this paper teaches a graduate level
high performance computing course at Northern Arizona
University. We evaluated the efficacy of the modules using
pre and post module completion quizzes. The quizzes did
not contribute to student grades. The students in the course
were motivated to take the quizzes so that they could assess
whether they understood the course material. The students



TABLE III
DEMOGRAPHICS OF THE STUDENTS IN THE GRADUATE LEVEL HIGH

PERFORMANCE COMPUTING COURSE (CS- COMPUTER SCIENCE, EE-
ELECTRICAL ENGINEERING).

Program Number
Computer Science (BS) 1
Computer Science (MS) 1
Electrical Engineering (MS) 2
Astronomy & Planetary Science (PhD) 1
Informatics & Computing (PhD) 5 (1×bioinformatics, 1×CS,

1×ecoinformatics, 2×EE)

were informed that the results of the quizzes would appear in a
study, and the instructor shared the results with the students at
the end of the semester. Furthermore, the instructor collected
responses to an anonymous free response survey.

We used no-stakes quizzes to understand module efficacy,
because without pre-module completion quizzes, we would not
have a baseline for each student. We elected not to directly use
assignment scores in the course, because it does not capture
baseline performance. Furthermore, since students are not
expected to master knowledge before completing the modules,
the pre quizzes are unfair by design; therefore, it would be
unfair to grade these quizzes.

Some quiz scores were excluded from the study. Students
that did not complete both pre and post quizzes for a given
module had their quiz score removed for that module (if
they completed a single quiz). Otherwise, this would not
indicate whether their scores improved after completing a
given module. Seven of ten students completed all quizzes,
so the quiz completion rate is high.

Table III presents the population of 10 students in the
high performance computing course offered in Spring 2020.
Students in the Informatics & Computing PhD program were
asked to report on their prior education, since the multi-
disciplinary program trains students with a large range of
backgrounds. Note that only three students have a traditional
computer science background (one undergraduate, one MS,
and one PhD). The other seven students are from electrical
engineering, astronomy, bioinformatics, and ecoinformatics1.
This diverse group of students demonstrates the motivation
for these data-intensive pedagogic modules. Without motivat-
ing applications, the students may not understand why high
performance computing may be important to their research.
Furthermore, many students will be able to use the applications
in their research.

B. Example Quiz Question

In what follows, we illustrate an example quiz question from
Quiz 4 that was used to assess Module 4. Question: Figure 1
shows the speedup of two different MPI programs executed
on two identical 32-core compute nodes. Both programs only
use 20 of 32 cores. Also, both programs need to be executed

1A caveat here is that students without a computer science degree may
have completed computer science courses during their education, particularly
lower division programming courses. Therefore, the information in Table III
does not fully capture the educational experiences of the cohort.
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Fig. 1. Example quiz question. Speedup vs. number of cores/MPI ranks for
(a) Program 1; and (b) Program 2.

continuously (on 20 cores) for the next week and will be run
on the same two nodes (compute nodes 1 and 2). Another user
wants to use one of the compute nodes that you are executing
one of your programs on. Select the program and compute
node that is most likely to minimize performance degradation
to your program. Circle one answer: (1) Program 1/Compute
Node 1, or (2) Program 2/Compute Node 2.

In Module 4, the students had to reflect on whether their
range query implementation using an R-tree would perform
best if they had to share resources with another user that was
running either a memory-bound or a compute-bound program.
Since CPU cores cannot be shared by users on our cluster (a
typical cluster configuration), it is preferable to share resources
with the user running a compute-bound program, since the R-
tree implementation is memory-bound.

Similarly, the answer to the quiz question is program
2/compute node 2. If poor scalability (Program 1, Figure 1(a))
is due to a memory-bound algorithm, then sharing resources
with another job that is memory-bound will likely degrade the
performance of both jobs.

This module and quiz question gives students exposure
to thinking about the co-scheduling of jobs. Assigning two
(or more) identical jobs has been coined the terrible twins
problem [41]. Co-scheduling the same (or similar) programs
on the same resource leads to potentially severe performance
degradation relative to executing the jobs on dedicated re-
sources [42], [43]. Since CPU cores continue to be added
to multi-core processors, contention for memory bandwidth
is often the limiting resource [44].

C. Results

Figure 2 shows the pre and post module completion quiz
scores for the ten students in the course. As described above,
those students that did not complete both pre and post quizzes
for a given module were removed from the sample. From
Quiz 1 (Module 1), we observe that overall, the students
understood the material very well even before completing the
module. Since the students had exposure to MPI communica-
tion concepts in lecture, and because the basic communication
concepts are less demanding in Quiz 1/Module 1 than future
concepts, it was expected that the students were going to
perform well on both the pre and post module completion
quizzes. From the plots showing Quizzes 2–4, we observe that
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Fig. 2. Student quiz scores pre (white bar) and post (blue bar) module
completion. Quizzes 1–5 are ordered from top to bottom, which correspond
to modules 1–5, respectively.

there is much more variability in pre and post quiz scores. Also
note that six students (#2, 5, 6, 8, 9, 10) had all of their quiz
scores either stay the same or increase between the pre and
post quizzes. Four students (#1, 3, 4, 7) had at least one score
decrease between the pre and post quizzes.

Table IV summarizes several statistics derived from Fig-
ure 2. In total, there are 42 pre and post quiz pairs. There are 17
pairs which are equal in score, 19 pairs where scores increased
after completing the module, and there are 6 instances where
scores decreased after completing the module. Students either
maintained the same quiz score or increased their score after
completing the module in 85.7% of the instances. Furthermore,
we note that in 4 of 5 quizzes, the mean quiz grades increased.
Quiz 5 saw a modest decrease in mean quiz scores, from
80.21% to 79.17%. The reason for this minor decrease is
not readily apparent from the collected data, so we do not
speculate on this phenomena.

To better understand the magnitude of increasing and de-
creasing scores, we examine the mean relative performance
increase (or decrease). The mean relative performance in-
crease and decrease are computed as 1

i ·
∑i

j=1
|aj−bj |

bj
, and

TABLE IV
STATISTICS DERIVED FROM FIGURE 2. SEE TEXT FOR DETAILS.

Statistic Value
Total Pre & Post Quiz Pairs 42
Pre & Post: Equal in Score 17
Pre & Post: Increase in Score (i) 19
Pre & Post: Decrease in Score (d) 6
Mean Relative Performance Increase 47.86%
Mean Relative Performance Decrease 27.30%
Mean Quiz 1 Grade Pre (Post) 88.89% (98.15%)
Mean Quiz 2 Grade Pre (Post) 82.22% (88.89%)
Mean Quiz 3 Grade Pre (Post) 69.50% (77.78%)
Mean Quiz 4 Grade Pre (Post) 60.71% (67.86%)
Mean Quiz 5 Grade Pre (Post) 80.21% (79.17%)

1
d ·

∑d
j=1

|aj−bj |
bj

, respectively, where aj and bj refer to pre
and post quiz scores for those quiz pairs with an increase
(i = 19) or decrease (d = 6) in score. We find that when
scores increase, the mean relative increase is 47.86%, but
decreasing scores are relatively smaller, which decrease by
27.30% on average. This indicates that in cases where students
improved between the two quizzes, the completion of the
modules improves understanding of core concepts. We note
that due to the small sample size, we abstain from drawing
strong conclusions regarding these findings.

From Table IV, we observe that Quiz 4 had a lower
score than the other quizzes. This quiz largely focused on
analyzing several hypothetical performance evaluations that
require students to synthesize their understanding of core
performance metrics. Module 4 required students to create
their own performance evaluation that uses different resource
allocations (number of nodes and cores, dedicated vs. non-
dedicated nodes, etc.). Since these module questions are open-
ended, depending on how much effort students applied to these
module questions, they may have not fully appreciated the
hypothetical scenarios in the quiz questions. Therefore, we
hypothesize that these scenarios may be more challenging for
students than the other quizzes, as they are more conceptual
in nature, and were dependent on the level of effort made on
examining the impact of resource allocation in Module 4.

D. Student Free Response Surveys

The instructor asked students to comment on several aspects
of the course. We present a selection of the responses to the
anonymous free response surveys below (edited for spelling,
grammar, and brevity).
• Students were asked if they found the course easier or more

difficult than other graduate level courses. Reported results:
1 student- easier, 5 students- more difficult, and 4 students-
much more difficult.

• Students were asked what aspects of this class they found
most challenging. Students reported: (i) “Building a coding
environment on my laptop and dealing with how the cluster
works took more effort than I thought.” (ii) “. . . designing
a parallel algorithm and working with the cluster were chal-
lenging.” (iii) “I was a bit overwhelmed in the beginning
with trying new code and dealing with the cluster.”



• Students were asked what their favorite module was and
why (if applicable). Four students reported that they liked
Module 5 (k-means). Students elaborated that they liked the
module because the prior modules provided the scaffolding
to do well on the assignment. They also liked the visualiza-
tion aspect of the assignment, and that it was satisfying to
see the data cluster correctly.

• Students were asked what their least favorite module was
and why (if applicable). The responses were inconsistent: 2,
1, 1, 2, and 1 students found that modules 1, 2, 3, 4, and 5
were their least favorite, respectively.

• Students were asked what the most challenging module was
and why (if applicable). Four students reported that Mod-
ule 2 was the most difficult. One student reported that it was
challenging because it was significantly more complicated
than Module 1. Another student reported that they were still
not confident in MPI when completing Module 2. Another
student reported that they wanted more instruction on how
to write blocking for loops.

• Additional responses from the free response surveys in-
cluded: (i) “It was a great course, which taught me a
new skill.” (ii) “Of my classes this seemed like the most
practical. . . . And learning how to use Monsoon will help me
in other courses. HPC will only grow in importance.” (iii)
“. . . Furthermore, it is really good to be able to apply parallel
programming approaches to speedup an algorithm. . . This
knowledge will really help us in our academic life.” (iv) “I
like that all of the examples span a broad number of subjects
and topics.”

Interpretation and Discussion: Overall, the students felt that
the course was more difficult than their other graduate level
courses. Students reported that there are many new concepts
and skills to learn related to both PDC and extraneous concepts
such as the cluster and the command line environment which
make the pedagogic activities more challenging than material
in other courses. Few students in the class have a traditional
computer science background (Table III), and the course
may be more demanding for non-traditional computer science
students.

Despite the reported challenges and the difficulty level rel-
ative to other graduate level courses, it is clear that core PDC
concepts can be taught to students with diverse backgrounds.
The pedagogic modules proposed here were largely successful
in teaching student learning outcomes that are common in PDC
curricula (Table I). We found that students were learning the
material and it is clear that the hands-on experience is very
beneficial to learning. Furthermore, the results imply that data-
intensive applications may be a good vehicle to teach PDC.

There are several caveats to this study. First, we only
examined a group of 10 graduate students, which is a small
sample to draw broad conclusions regarding the efficacy of
teaching PDC using the data-intensive pedagogic modules.
Second, students were assigned the pre quizzes before the
assignment was due, but not before they were exposed to
concepts in lecture. Therefore, the improvement in quiz scores
may also be due to lecture exposure and not entirely due to

the modules. Third, while the population of students in the
cohort is diverse, the students may have completed computer
science courses while enrolled in other programs. Therefore,
the students may have a stronger background in computer
science than that indicated by their degree program.

V. CONCLUSION

In this paper, we have presented pedagogic modules that
teach core PDC concepts through data-intensive algorithms.
The modules are designed to address students with diverse
educational backgrounds and goals. We evaluated the modules
using a population of graduate students in the first author’s
HPC course. We found that the hands-on approach employing
examples from data-intensive application areas was successful
at helping students learn key PDC concepts. We hope that the
experience enables students to achieve research goals in their
academic careers.

We encourage instructors to incorporate these modules into
PDC courses. The first author of this paper would be delighted
to assist any interested individuals.
Undergraduate Education: While the pedagogic modules
were evaluated in a graduate level class, the materials may also
be appropriate for teaching undergraduate computer science
students. These students would need to learn about the cluster
environment. Despite this potential drawback, one benefit
of teaching undergraduate computer science students is that
all students are expected to have mastered the extraneous
concepts that graduate students found challenging (reported in
Section IV-D), such as the command line environment, Linux,
and programming. Students learn these concepts in the lower
division and are expected to be proficient in these concepts
by the time they start enrolling in upper division courses.
Therefore, to some degree, there will be fewer stumbling
blocks when teaching undergraduates than a diverse population
of graduate students.
Future Work: Future work includes developing additional
modules as follows: (i) Modules that capture excluded con-
cepts, such as increasing focus on communication and latency
hiding. (ii) Modules with other data-intensive algorithms so
students have some choice in their assignments. (iii) Modules
that target undergraduate students.

Additionally, we are working on incorporating feedback
from our student surveys into the modules to improve their
presentation and detail. Finally, we will perform evaluations
of the modules using several cohorts of students in the course.
This will allow us to draw stronger conclusions regarding
module efficacy, and yield new insights into teaching PDC.
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