Exploring the Design-Space of GPU-Efficient

Similarity Self-Join Kernels

1l Benoit Gallet!+

1
.lllmﬁ

UNIVERSITE D'ORLEANS

benoit.gallet@etu.univ-orleans.fr

NORTHERN

ARIZDNA§
UNIVERSITY A

Michael Gowanlock?
Michael. Gowanlock©@nau.edu

'Université d'Orléans, Département d'Informatique

’Northern Arizona University, School of Informatics, Computing and Cyber Systems

1. Introduction
e Given a dataset, self-join finds all objects within a range of each other defined by a
similarity metric.

e Focus on the distance similarity self-joins, finding all points within a distance € of each
other.

e Use a grid-based index designed for the GPU to prune the search for nearby points.

2. Background

e The use of the GPU is justified by its high parallelism and memory bandwidth in com-
parison to a CPU.

e In previous work [1], Unicomp avoids redundant computations: given a point p and its
neighbor g, if g is within a distance € of p, then p is within a distance € of g, and it is
hossible to add both (p, g) and (g, p) to the result set.

e Figure 2 shows the comparison between grid cells that occur when a given query point
falls within a respective origin cell.

e Each thread processes a point. Some points are located in cells with many or few
comparisons to adjacent cells.

e Assuming that the data is uniformly distributed, then the computational work is not
balanced between all of the threads, as some threads will execute longer than others.

3. Solution

e A new computational pattern for Unicomp is advanced for 2D and 3D datasets called B-
Unicomp (Figure 1 shows for 2D). The computational load is theoretically evenly balanced
for non-border cells of the dataset, as well as the GPU resources.

e Another optimization is to increase the granularity of the parallel computation of the
distance calculations by using multiple threads to compute the distance between a point
and its neighbors as shown in Figure 2.

O «-f— 2 —+» 0 «t— 2 —» 0 2 = 4 > 3 4+— 4 —}» 2
SR S S O R
4 «4— 8 —» 6 «— 8 — > 4 2 1> 4 «-— 4 —» 4 «— 2
R R R TR .
O «— 2 —4» 0 «t— 2 —» 0 3 «— 4 —» 4 -— 4 —> 3
SRR S S TR TR
4 «4+— 8 —» 6 «— 8 —» 4 2 —f» 4 aft— 4 —» 4 «f— 2
TR TR TR TR B e e
O «+{— 2 —» 0 =«— 2 —» 0 14— 2 —» 1<— 2 > 1
Unicomp B-Unicomp

Figure 1: Unicomp and B-Unicomp computational patterns.

Pol 9% [9 |9 [9%]9] - [9]9a] 9,
\ A J \. /
tid=0 tid = 1 tid = k

Figure 2: p; the computed point, g; its neighbor points, tid the threads, k = (n+ 1)/ T, T the number of
threads per point.

4. Results
Implementations: SDSS2DA (2M points) SDSS2DB (15M points)
e SuperEGO: parallel CPU algorithm |3]. e Figure 4 plots the response time for real-world "1 [supereco °
p p g g p p - .
. : " " " 6 —&— Unicom
e GPU: global memory kernel advanced in [2] datasets: SW and SDSS in 2 and 3 dlmer.15|ons. I E”‘L‘T’WE@ 7- 8- SuperEGO
Uni Ut - These datasets are the same that were used in per- - 5 Unicomp/2 o 4 Unicomp
e Unicomp: solution proposed in |1]. : P @5 “Unicom
P pProp 1] formance results of [1]. We only consider up to 2 £ £, 3 Uricompi2
- - . . . =5 -
e B-Unicomp: balanced pattern for Unicomp. threads per point for Unicomp and B-Unicomp. | 3 //4,
o 2 — = =
® Unicomp/2: Unicomp using 2 threads per point. e While Unicomp and B-Unicomp achieve similar per- e ==
n u n . 0_ 0_
® B—Unlcomp/Z: B-Unlcomp using 2 threads per formance on 2D datasets, B—Unlcomp OUtperformS 0.3 0.6 0.9 1.2 15 0.02 0.04 0.06 0.08 0.1
point. Unicomp on 3D datasets. ; ‘
_ _ _ SW2DA (2M points) SW2DB (5.17M points)
e [he load balancing of B-Unicomp is demonstrated 35 -
. . . 35 7 uper uper
SW3DA. epsilon - 2.4 when there is a sufficient workload for the GPU to N E csjp'f’u 0 301 E %ﬁ’u -
—] nicomp nicomp
it execute . T e) 3 e
34 - E B-Unicomp/2) 0 - B-Unicomp/2 /
—8—- Blocksize 64 i " " " 20 74
o o poerest e Using 2 threads to compute a single point is only '§15 e |
—4— Blocksize 256 advantageous on large workloads (SW datasets),
Blocksize 512 _ 10 -
807 Blocksize 1024 and even outperforms the SuperEGO implementa- .
) .
o 28" tion on the SW3DA dataset, where SuperEGO out- ia
EE . dS d6 dQ £2 £5 OH Ob Ob Oh d5
E 56 performs Unicomp. - -

. number of threads used per point on the SW3DA 2o | === superEco N ———
. . —e— GPU —-e— GPU
dataset for an € = 2.4. While the block size does 180 1 |~ Unicomp —a— Unicomp

I
4 8 16 32 64

M —

Threads per point or 64 threads per point offers the best performance 2 100

Figure 3: Response time for different block sizes and threads improvement in this scenario.

per point. e \We leave the exploration of more than 2 threads 20
per point on the other datasets for future work.

24 - \'//'—’-\ e Figure 3 shows the impact of the block size and the SW3DA (2M points) SW3DB (5.17M points)
- 220 40

') not significantly impact the performance, using 8 5140 |~ B_Unicompl2

307 |4 Unicomp/2
B-Unicomp
B-Unicomp/2

160 4 |—+ Unicomp/2
B-Unicomp

| |] | | | I | |
0.6 0.2 1.8 2.4 3 0.2 0.4 0.6 0.8 1

Figure 4: Response time of SW and SDSS on 2 and 3 dimensions.

5. Conclusion
e |n each scenario, B-Unicomp outperforms or achieves the same performance as Unicomp.

e Using multiple threads per point is useful when the computational workload is high.

e Future work includes generalizing B-Unicomp to higher dimensions, avoiding redundant
operations when using multiple threads per point and a performance model that can be
used to select the best configuration given an € value and a dataset.

References

» [1] Michael Gowanlock, Ben Karsin GPU Accelerated Self-join for the Distance Similarity Metric In High-
Performance Big Data, Deep Learning, and Cloud Computing, Workshop of the 32nd IEEE International
Parallel & Distributed Processing Symposium, Vancouver, 2018.

5 [2] Michael Gowanlock, Cody M. Rude, David M. Blair, Justin D. Li, Victor Pankratius Clustering Through-
put Optimization on the GPU In Proc. of the 31st IEEE International Parallel & Distributed Processing
Symposium, Orlando, 2017.

2 [3] Dmitri V. Kalashnikov Super-EGO: fast multi-dimensional similarity join In The VLDE Journal, vol. 22,
no. 4, pp. 561-585, 2013.

