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1. Introduction
e Given a dataset, self-join finds all objects within a range of each other defined by a
similarity metric.

e Focus on the distance similarity self-joins, finding all points within a distance € of each
other.

e Use a grid-based index designed for the GPU to prune the search for nearby points.

2. Background

e The use of the GPU is justified by its high parallelism and memory bandwidth in com-
parison to a CPU.

e In previous work [1], Unicomp avoids redundant computations: given a point p and its
neighbor g, if g is within a distance € of p, then p is within a distance € of g, and it is
hossible to add both (p, g) and (g, p) to the result set.

e Figure 2 shows the comparison between grid cells that occur when a given query point
falls within a respective origin cell.

e Each thread processes a point. Some points are located in cells with many or few
comparisons to adjacent cells.

e Assuming that the data is uniformly distributed, then the computational work is not
balanced between all of the threads, as some threads will execute longer than others.

3. Solution

e A new computational pattern for Unicomp is advanced for 2D and 3D datasets called B-
Unicomp (Figure 1 shows for 2D). The computational load is theoretically evenly balanced
for non-border cells of the dataset, as well as the GPU resources.

e Another optimization is to increase the granularity of the parallel computation of the
distance calculations by using multiple threads to compute the distance between a point
and its neighbors as shown in Figure 2.
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Figure 1: Unicomp and B-Unicomp computational patterns.
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Figure 2: p; the computed point, g; its neighbor points, tid the threads, k = (n+ 1)/ T, T the number of
threads per point.

4. Results
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Figure 3: Response time for different block sizes and threads improvement in this scenario.
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Figure 4: Response time of SW and SDSS on 2 and 3 dimensions.

5. Conclusion
e |n each scenario, B-Unicomp outperforms or achieves the same performance as Unicomp.

e Using multiple threads per point is useful when the computational workload is high.

e Future work includes generalizing B-Unicomp to higher dimensions, avoiding redundant
operations when using multiple threads per point and a performance model that can be
used to select the best configuration given an € value and a dataset.
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