Exploring the Design-Space of GPU-Efficient Similarity Self-Join Kernels

1. Introduction
- Given a dataset, self-join finds all objects within a range of each other defined by a similarity metric.
- Focus on the distance similarity self-joins, finding all points within a distance \(\epsilon \) of each other.
- Use a grid-based index designed for the GPU to prune the search for nearby points.

2. Background
- The use of the GPU is justified by its high parallelism and memory bandwidth in comparison to a CPU.
- In previous work [1], Unicomp avoids redundant computations: given a point \(p \) and its neighbor \(q \), if \(q \) is within a distance \(\epsilon \) of \(p \), then \(p \) is within a distance \(\epsilon \) of \(q \), and it is possible to add both \((p, q) \) and \((q, p) \) to the result set.
- Figure 2 shows the comparison between grid cells that occur when a given query point falls within a respective origin cell.
- Each thread processes a point. Some points are located in cells with many or few comparisons to adjacent cells.
- Assuming that the data is uniformly distributed, then the computational work is not balanced between all of the threads, as some threads will execute longer than others.

3. Solution
- A new computational pattern for Unicomp is advanced for 2D and 3D datasets called B-Unicomp (Figure 1 shows for 2D). The computational load is theoretically evenly balanced for non-border cells of the dataset, as well as the GPU resources.
- Another optimization is to increase the granularity of the parallel computation of the distance calculations by using multiple threads to compute the distance between a point and its neighbors as shown in Figure 2.

4. Results
Implementations:
- SuperEGO: parallel CPU algorithm [3].
- GPU: global memory kernel advanced in [2].
- Unicomp: solution proposed in [1].
- B-Unicomp: balanced pattern for Unicomp.
- Unicomp/2: Unicomp using 2 threads per point.
- B-Unicomp/2: B-Unicomp using 2 threads per point.

- Figure 4 plots the response time for real-world datasets: SW and SDSS in 2 and 3 dimensions. These datasets are the same that were used in performance results of [1]. We only consider up to 2 threads per point for Unicomp and B-Unicomp.
- While Unicomp and B-Unicomp achieve similar performance on 2D datasets, B-Unicomp outperforms Unicomp on 3D datasets.
- The load balancing of B-Unicomp is demonstrated when there is a sufficient workload for the GPU to execute.
- Using 2 threads to compute a single point is only advantageous on large workloads (SW datasets), and even outperforms the SuperEGO implementation on the SW3DA dataset, where SuperEGO outperforms Unicomp.
- Figure 3 shows the impact of the block size and the number of threads used per point on the SW3DA dataset for an \(\epsilon = 2.4 \). While the block size does not significantly impact the performance, using 8 or 64 threads per point offers the best performance improvement in this scenario.
- We leave the exploration of more than 2 threads per point on the other datasets for future work.

5. Conclusion
- In each scenario, B-Unicomp outperforms or achieves the same performance as Unicomp.
- Using multiple threads per point is useful when the computational workload is high.
- Future work includes generalizing B-Unicomp to higher dimensions, avoiding redundant operations when using multiple threads per point and a performance model that can be used to select the best configuration given an \(\epsilon \) value and a dataset.

References