
Exploring the Design-Space of GPU-Efficient
Similarity Self-Join Kernels

Benôıt Gallet1,2

benoit.gallet@etu.univ-orleans.fr
Michael Gowanlock2

Michael.Gowanlock@nau.edu

1Université d’Orléans, Département d’Informatique
2Northern Arizona University, School of Informatics, Computing and Cyber Systems

1. Introduction
• Given a dataset, self-join finds all objects within a range of each other defined by a

similarity metric.

• Focus on the distance similarity self-joins, finding all points within a distance ε of each
other.

• Use a grid-based index designed for the GPU to prune the search for nearby points.

2. Background
• The use of the GPU is justified by its high parallelism and memory bandwidth in com-

parison to a CPU.

• In previous work [1], Unicomp avoids redundant computations: given a point p and its
neighbor q, if q is within a distance ε of p, then p is within a distance ε of q, and it is
possible to add both (p, q) and (q, p) to the result set.

• Figure 2 shows the comparison between grid cells that occur when a given query point
falls within a respective origin cell.

• Each thread processes a point. Some points are located in cells with many or few
comparisons to adjacent cells.

• Assuming that the data is uniformly distributed, then the computational work is not
balanced between all of the threads, as some threads will execute longer than others.

3. Solution
• A new computational pattern for Unicomp is advanced for 2D and 3D datasets called B-

Unicomp (Figure 1 shows for 2D). The computational load is theoretically evenly balanced
for non-border cells of the dataset, as well as the GPU resources.

• Another optimization is to increase the granularity of the parallel computation of the
distance calculations by using multiple threads to compute the distance between a point
and its neighbors as shown in Figure 2.

Figure 1: Unicomp and B-Unicomp computational patterns.

Figure 2: pi the computed point, qj its neighbor points, tid the threads, k = (n + 1)/T , T the number of
threads per point.

4. Results
Implementations:

• SuperEGO: parallel CPU algorithm [3].

• GPU: global memory kernel advanced in [2].

• Unicomp: solution proposed in [1].

• B-Unicomp: balanced pattern for Unicomp.

• Unicomp/2: Unicomp using 2 threads per point.

• B-Unicomp/2: B-Unicomp using 2 threads per
point.

Figure 3: Response time for different block sizes and threads
per point.

• Figure 4 plots the response time for real-world
datasets: SW and SDSS in 2 and 3 dimensions.
These datasets are the same that were used in per-
formance results of [1]. We only consider up to 2
threads per point for Unicomp and B-Unicomp.

• While Unicomp and B-Unicomp achieve similar per-
formance on 2D datasets, B-Unicomp outperforms
Unicomp on 3D datasets.

• The load balancing of B-Unicomp is demonstrated
when there is a sufficient workload for the GPU to
execute.

• Using 2 threads to compute a single point is only
advantageous on large workloads (SW datasets),
and even outperforms the SuperEGO implementa-
tion on the SW3DA dataset, where SuperEGO out-
performs Unicomp.

• Figure 3 shows the impact of the block size and the
number of threads used per point on the SW3DA
dataset for an ε = 2.4. While the block size does
not significantly impact the performance, using 8
or 64 threads per point offers the best performance
improvement in this scenario.

• We leave the exploration of more than 2 threads
per point on the other datasets for future work.

Figure 4: Response time of SW and SDSS on 2 and 3 dimensions.

5. Conclusion
• In each scenario, B-Unicomp outperforms or achieves the same performance as Unicomp.

• Using multiple threads per point is useful when the computational workload is high.

• Future work includes generalizing B-Unicomp to higher dimensions, avoiding redundant
operations when using multiple threads per point and a performance model that can be
used to select the best configuration given an ε value and a dataset.

References
[1] Michael Gowanlock, Ben Karsin GPU Accelerated Self-join for the Distance Similarity Metric In High-
Performance Big Data, Deep Learning, and Cloud Computing, Workshop of the 32nd IEEE International
Parallel & Distributed Processing Symposium, Vancouver, 2018.

[2] Michael Gowanlock, Cody M. Rude, David M. Blair, Justin D. Li, Victor Pankratius Clustering Through-
put Optimization on the GPU In Proc. of the 31st IEEE International Parallel & Distributed Processing
Symposium, Orlando, 2017.

[3] Dmitri V. Kalashnikov Super-EGO: fast multi-dimensional similarity join In The VLDB Journal, vol. 22,
no. 4, pp. 561-585, 2013.


