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Abstract
Given two datasets (or tables) A and B and a search distance � , the distance similarity join, denoted as A⋉

�
B , finds the pairs 

of points ( pa , pb ), where pa ∈ A and pb ∈ B , and such that the distance between pa and pb is ≤ � . If A = B , then the similarity 
join is equivalent to a similarity self-join, denoted as A ⋈

�
A . We propose in this paper Heterogeneous Epsilon Grid Joins 

(HEGJoin), a heterogeneous CPU-GPU distance similarity join algorithm. Efficiently partitioning the work between the 
CPU and the GPU is a challenge. Indeed, the work partitioning strategy needs to consider the different characteristics and 
computational throughput of the processors (CPU and GPU), as well as the data-dependent nature of the similarity join that 
accounts in the overall execution time (e.g., the number of queries, their distribution, the dimensionality, etc.). In addition 
to HEGJoin, we design in this paper a dynamic and two static work partitioning strategies. We also propose a performance 
model for each static partitioning strategy to perform the distribution of the work between the processors. We evaluate the 
performance of all three partitioning methods by considering the execution time and the load imbalance between the CPU and 
GPU as performance metrics. HEGJoin achieves a speedup of up to 5.46× ( 3.97× ) over the GPU-only (CPU-only) algorithms 
on our first test platform and up to 1.97× ( 12.07× ) on our second test platform over the GPU-only (CPU-only) algorithms.

Keywords  HEGJoin · Work partitioning · Heterogeneous CPU-GPU computing · Range query · Similarity join · Super-
EGO

1  Introduction

Consider two input datasets A and B, and a distance thresh-
old � . A distance similarity search finds the pairs of points 
( pa , pb ), pa ∈ A and pb ∈ B , such that the distance between 
these two points is ≤ � . While any distance function can be 
used, in the literature, the Euclidean distance is typically 
employed [1–6]. These similarity searches are typically 
computed as a semi-join operation ( A⋉

�
B ), where A is a 

set or table of query points and B a set or table of entries in 
an index. The particular case where A = B is a self-join (and 
thus A ⋈

�
A ). For simplicity, we examine in this paper the 

self-join problem. However, we do not explore optimizations 

exclusive to the self-join. Thus, our optimizations apply to 
the semi-join case as well. For an input dataset, D, the brute-
force self-join solution has a time complexity of O(|D|2) . 
This complexity decreases when a data indexing method is 
used to prune the search space. Hence, using an index and 
the search-and-refine strategy, for each query point in D, the 
search of the index generates a set of candidate points that 
are likely to be within � of the query point, while the refine 
step computes the distance between a query point and its 
candidate points to produce the final result set.

The indexing methods used for the search-and-refine 
strategy are often designed for either low [2–4, 6] or high 
dimensionality [5, 7, 8]. Due to the curse of dimensional-
ity [3, 9], when dimensionality increases, index searches 
become more exhaustive, and the complexity of the algo-
rithm gradually degrades into a brute-force search. Hence, 
indexes suited for low-dimensional data are likely not to be 
as efficient when used on higher-dimensional data (and vice 
versa). The curse of dimensionality is thus among the rea-
sons why we only focus here on the low-dimensionality case, 
rather than any dimensionality: we elect to create an efficient 

 *	 Benoit Gallet 
	 benoit.gallet@nau.edu

	 Michael Gowanlock 
	 michael.gowanlock@nau.edu

1	 School of Informatics, Computing and Cyber Systems, 
Northern Arizona University, 1295 S Knoles Dr, Flagstaff, 
AZ 86011, USA

http://orcid.org/0000-0001-9716-1502
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00145-x&domain=pdf


	 B. Gallet, M. Gowanlock 

1 3

algorithm for the low-dimensional case, rather than a less 
efficient algorithm that addresses all dimensionalities. Fur-
thermore, while low-dimensional searches are often mem-
ory-bound, high-dimensional searches are usually compute-
bound, as the cost of a distance calculation increases with 
dimensionality. In this paper, we focus on low-dimensional 
searches. Hence, HEGJoin may saturate memory bandwidth, 
thus potentially negatively impacting performance and paral-
lel scalability of the algorithm, as compared to when fewer 
processors contend for memory bandwidth.

Graphics processing units (GPUs) have been increasingly 
used for general computational problems and particularly 
for improving similarity join performance [4, 5], and with 
specific data indexing methods that are suited to the GPU’s 
particular single instruction multiple threads (SIMT) archi-
tecture [10–14]. The proliferation of GPUs is particularly 
explained by their increased computational throughput and 
higher memory bandwidth compared to CPUs. However, 
despite these attractive features, their use in combination 
with the CPU to perform some part of the computation to 
further improve database query throughput, such as the 
distance similarity join, remains underexplored. Thus, we 
propose in this paper HEGJoin, a heterogeneous CPU-GPU 
distance similarity search algorithm. Hence, in addition to 
the CPU performing GPU-supporting tasks (launching ker-
nels, transferring data, etc.), we explicitly use the CPU to 
compute a fraction of the total number of query points.

As discussed above, the literature concerning heteroge-
neous CPU-GPU database applications is relatively scarce. 
Thus, we propose to leverage both the CPU and GPU and 
design an efficient algorithm to compute distance similarity 
searches. There are two major CPU-GPU similarity search 
algorithm designs, described as follows:

•	 Task parallelism Assign the CPU and GPU particular 
tasks to compute, such as searching on the CPU and then 
refining on the GPU [15].

•	 Data parallelism Split the data to compute and perform 
both the search and refine steps on each architecture 
independently, using different algorithms suited to the 
strengths of each architecture [16].

In the literature, heterogeneous CPU-GPU similarity 
search and related range query algorithms focus on a task-
parallel approach [15, 17]. The task-parallel approaches 
model the problem as a two [15] or three stage pipeline 
[17], where the CPU is assigned one task, such as searching 
an index, and the GPU is assigned the task of refining the 
candidate points [15]. Consequently, as with any pipeline, 
the throughput is dependent on the slowest stage. There-
fore, the drawback of the task-parallel approach is that it can 
leave resources (CPU or GPU) underutilized. In this paper, 
we focus on the data-parallel approach, which allows us to 

exploit all available computational resources in the system 
to maximize query throughput. Since we concurrently use 
the CPU and GPU, we then need to efficiently partition the 
work among our processors, i.e., assign to each processor 
a number of queries to compute so the algorithm achieves 
good load balancing and thus good performance. To the best 
of our knowledge, HEGJoin is the first data-parallel hetero-
geneous and concurrent CPU-GPU distance similarity join 
algorithm.

As our solution is designed for data-parallelism, our 
work partitioning strategies partition queries from the input 
dataset. Because HEGJoin is a heterogeneous CPU-GPU 
algorithm, this is particularly challenging as we need to 
efficiently distribute the work to accommodate each proces-
sor’s architectural characteristics. The data-parallel work 
partitioning can be achieved by different methods: dynami-
cally [16] where the work is assigned to the processors on-
demand, or statically [18, 19], where each processor has a 
fixed amount of work to compute. Statically partitioning the 
work is challenging, as we need to determine the amount of 
work to be assigned to the CPU and GPU such that it mini-
mizes load imbalance between the processors. The workload 
has data-dependent performance characteristics that depend 
on the number of points, their dimensionality, and their dis-
tribution (e.g., underdense vs. overdense regions). Consider 
partitioning the data using a dynamic approach. In this case, 
partitioning involves having the pieces of work assigned to 
the CPU or the GPU, where there is a trade-off between 
small work units assigned to each processor to achieve good 
load balancing, and large work units so that the processors 
reach peak throughput. On the other hand, static partitioning 
requires accurately estimating the total workload, which is 
particularly challenging given the data-dependent nature of 
the work. In contrast, on other problems that have determin-
istic workloads, the workload can be accurately estimated, 
and static work partitioning is straightforward [20].

To enable static partitioning, we propose two perfor-
mance models that quantify the workload based on different 
metrics that enable the two static partitioning strategies to 
assign work to the CPU and GPU. Additionally, we propose 
a dynamic partitioning strategy that is oblivious to the work-
load. We compare these partitioning strategies to assess their 
relative strengths and weaknesses, to understand how the 
characteristics of the workload may affect the performance 
of HEGJoin, and to ultimately be able to select the partition-
ing strategy that yields the best performance.

Our algorithm leverages two previously proposed inde-
pendent works that were shown to be highly efficient: the 
GPU algorithm (LBJoin) by [6] and the CPU algorithm 
(Super-EGO) by [3]. However, although we mention above 
that HEGJoin employs a data-parallel approach, as we lev-
erage two different algorithms (LBJoin and Super-EGO) 
and a work queue, our algorithm also has task-parallel 
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characteristics. While the output of LBJoin and Super-EGO 
is identical, the algorithm executed by the CPU is inherently 
different from the algorithm executed by the GPU. There-
fore, HEGJoin uses a mixed parallelism model (a combina-
tion of data- and task-parallelism). Figure 1 illustrates how 
LBJoin and Super-EGO work together through the use of a 
single shared work queue.

By combining the LBJoin and Super-EGO algorithms 
and using our work partitioning methods, we achieve bet-
ter performance on most experimental scenarios than CPU-
only or GPU-only approaches. Note that, since Super-EGO 
and LBJoin respective indexing methods are more efficient 
in lower dimensions, and as most of the related literature 
works rarely focus on both low and high dimensionality, 
we choose to focus on low-dimensional distance similarity 
joins. Hence, this paper makes the following contributions: 

1.	 We combine state-of-the-art algorithms for the CPU and 
GPU to propose a new algorithm, HEGJoin, and which 
is, to the best of our knowledge, the first data-parallel 
heterogeneous and concurrent CPU-GPU distance simi-
larity join algorithm.

2.	 We propose an efficient shared double-ended work queue 
(deque) to assign query points either to the CPU or to 
the GPU. Furthermore, we exploit the GPU’s high com-
putational throughput by assigning it query points with 
the highest workload (located at the beginning of the 
deque), while we assign the query points with the small-
est workload to the CPU.

3.	 We develop three different workload partitioning strate-
gies. The dynamic work partitioning strategy uses the 
shared deque to assign work to either the CPU or GPU. 
In this case, there is no fixed boundary on the work that 
can be assigned to the CPU or the GPU, as it is assigned 
to processors on-demand. Furthermore, we advance two 

static work partitioning methods: based on the number 
of query points and based on the total number of can-
didate points that need to be refined per query point. 
As with both static strategies, the CPU and GPU have 
a fixed number of queries to compute, if the GPU com-
pletes its work before the CPU, it must wait for the CPU 
to complete its work (and vice versa).

4.	 We optimize Super-EGO to further improve the perfor-
mance of HEGJoin. We denote this optimized version 
of Super-EGO as New-Super-EGO.

5.	 We evaluate the performance of HEGJoin using seven 
real-world and ten exponentially distributed synthetic 
datasets and using two platforms. We achieve speedups 
up to 5.46× and 3.97× over the GPU-only and CPU-only 
algorithms on the first test platform and speedups up to 
1.97× and 12.07× on the second test platform. Further-
more, we achieve an average load imbalance ratio as 
low as 0.14 when using the dynamic work partitioning 
strategy on the first platform.

The paper is organized as follows. We begin in Sect. 2 by 
surveying the literature and presenting an overview of GPU 
architecture. We then present in Sect. 3 the leveraged algo-
rithms, and we describe HEGJoin and its main features in 
Sect. 4. We evaluate the performance of HEGJoin and our 
partitioning methods in Sect. 5, and we finally conclude this 
paper in Sect. 6.

2 � Background

2.1 � Problem Statement

Let D be a dataset in d dimensions. Each point in D is 
denoted as qi , where i = 1, ..., |D| . We denote the jth 

Fig. 1   Representation of how we combine Super-EGO and LBJoin by 
using a single work queue to form HEGJoin. When using the static 
partitioning strategy, the CPU and the GPU would access the work 
queue only once (at the beginning of the algorithm to retrieve their 

assigned queries). When using the dynamic partitioning scheme, the 
CPU and the GPU would iteratively query the work queue for queries 
to compute until it is empty
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coordinate of qi ∈ D as qi(j) , where j = 1, ..., d . Thus, given 
a distance threshold � , we define the distance similarity 
search of a query point q as finding all points in D that are 
within this distance � to q. We also define a candidate point 
c ∈ D as a point whose distance to q is evaluated. Similarly 
to related work, we use the Euclidean distance. Therefore, 
the similarity join finds pairs of points ( q ∈ D , c ∈ D ), such 
that dist(q, c) ≤ � , where dist(q, c) =

�∑d

j=1
(q(j) − c(j))2  . 

All processing occurs in-memory. While we consider the 
case where the result set size may exceed the GPU’s global 
memory capacity, we do not consider the case where the 
result set size may exceed the platform’s main memory 
capacity.

2.2 � GPU Architecture

We present material related to GPU architecture and use 
CUDA terminology throughout the paper. Modern GPUs 
are equipped with a few thousand cores. The global mem-
ory bandwidth of the GPU is over an order of magnitude 
higher than the main memory bandwidth of the CPU (up 
to 1555 GB/s for the Tesla A100 [21] GPU). However, the 
GPU’s global memory has limited capacity, and the potential 
for parallelism is dependent on control flow, as threads are 
executed in groups of 32 (called warps) in lock step. Also, 
different workloads assigned to threads within the same warp 
induce idle periods, where some threads are idle while others 
are computing. The PCI interconnect between the CPU and 
the GPU is a bottleneck (PCIe-v3 has 32 GiB/s bidirectional 
bandwidth). For more information on the CUDA program-
ming model and the GPU architecture, we refer the reader 
to general references on the topic [22, 23].

2.3 � Related Work

In this section, we outline relevant work regarding the dis-
tance similarity join and work partitioning methods between 
heterogeneous architectures.

2.3.1 � Data Indexing

Since the similarity join is frequently used as a building 
block within other algorithms, the literature regarding the 
optimization of the similarity join is extensive. However, 
the vast majority of the existing literature aims at improving 
performance using either the CPU or the GPU, and rarely 
both. Hence, the literature regarding heterogeneous CPU-
GPU similarity join optimizations remains relatively scarce. 
The search-and-refine strategy (Sect. 1) largely relies on the 
use of data indexing methods that we describe as follows.

Indexing data structures are used to prune the search 
space of an indexed input dataset to reduce the number of 

candidates that may be within � of each query point. Given 
a query point q and a distance threshold � , indexes find 
the candidate points that are likely to be within a distance 
� of q. Also, the majority of the indexes are designed for 
a specific use, whether they are for low- or high-dimen-
sional data, for the CPU, for the GPU, or both architec-
tures. We identify different indexing methods, including 
those designed for the CPU [2, 3, 24–29], the GPU [10, 
12, 30], or both architectures [15–17]. As our algorithm 
focuses on the low-dimensionality distance similarity 
search, we focus on presenting indexing methods that are 
designed for lower dimensions. Since indexes are an essen-
tial component of distance similarity searches, identifying 
the best index for each architecture is critical to achieve 
good performance, especially when using two different 
architectures. Furthermore, although our heterogeneous 
algorithm leverages two previously proposed works [3, 6] 
that both use a grid index for the CPU and the GPU, we 
discuss in the following sections several other indexing 
methods based on trees.

CPU Indexing In the literature, the majority of indexes 
designed for the CPU used to index multi-dimensional data 
are based on trees. The following trees have been designed 
for range queries and can, therefore, be used for distance 
similarity searches. The kD-Tree [24] is a binary tree that 
indexes k-dimensional data by subsequently splitting the 
search space in two, following an alternation of the k dimen-
sions (in two dimensions for example, split following the 
x-axis, then the y-axis, then the x-axis, etc.). Hence, each 
node stores the coordinates of its search space and splits 
it between its two child nodes. The Quad Tree [31] is very 
similar to the kD-Tree, as it consists of a tree whose nodes 
have four children, and as the search space is subsequently 
divided into four subspaces (instead of two for the kD-Tree). 
The nodes of the R-Tree [27] consist of bounding boxes to 
store multi-dimensional objects, which are then stored in the 
leaf nodes of the tree. In addition to these tree indexes, grids 
such as the Epsilon Grid Order (EGO) [2, 3] have also been 
designed for distance similarity joins. We discuss this EGO 
index that we leverage in Sect. 3.2.

GPU Indexing Similar to CPU indexes, index-trees have 
been optimized to address the GPU’s SIMT architecture. 
[12] optimized the R-Tree on the GPU by replacing the 
recursive accesses inherent to traversing the tree that are 
not suited to the GPU. They replaced these accesses by 
sequential accesses, particularly by allowing the search of 
the tree to jump from a node to its next sibling. [10] improve 
the efficiency of the B-Tree by using nodes the size of the 
GPU’s cache access size and by avoiding recursive calls 
during the tree traversal as well. Furthermore, they assign 
multiple queries to a warp, with all the threads of the same 
warp that cooperate to compute one query at a time, thus 
reducing intra-warp thread divergence. We leverage the GPU 
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grid index proposed by [30] and that is designed for distance 
similarity joins, which we present in Sect. 3.1.1.

CPU-GPU Indexing [15] propose an R-Tree designed for 
range queries that uses task parallelism. The CPU searches 
the internal nodes of the tree and, when reaching the leaf 
nodes, sends this partial result to the GPU. The GPU then 
traverses these leaf nodes, which are stored as a contiguous 
array in GPU’s main memory so the memory accesses are 
likely coalesced, and refines the candidate objects. In con-
trast, [16] elects to use two indexes for data parallelism to 
compute k NN searches. The CPU uses a kD-Tree [24], while 
the GPU uses a grid [30]. Hence, both indexes are suited to 
their respective architecture.

2.3.2 � Workload Partitioning

As described above, efficiently partitioning the work of par-
allel algorithms is critical, whether it is based on the tasks 
to execute (task-parallelism), or the data to compute (data-
parallelism). Because the solution we propose in this paper 
requires data-parallelism, we describe in this section contri-
butions in the literature that propose partitioning schemes 
for data-parallel algorithms as well.

Efficient work partitioning is usually difficult to achieve 
since several parameters need to be considered: typically 
the processors’ relative performance (e.g., computational 
throughput or memory bandwidth), and if the algorithm’s 
workload can be easily determined (usually the case for non 
data-dependent workloads). On problems exposing a data-
dependent workload, such as the distance similarity join or 
sparse matrix multiplications [32] for example, determining 
the workload is more challenging than for problems with-
out data-dependent workloads (e.g., regular matrix–matrix 
multiplications [20]).

Dynamic partitioning solutions [16] present advantages 
to keeping the processors busy (as they are assigned work 
until none is available) and do not require knowing the rela-
tive performance of the processors beforehand, making it 
agnostic to platform hardware characteristics. Furthermore, 
while dynamic work partitioning does not require knowledge 
about the workload to be functional, it may still be beneficial 
to determine an overall workload in order to assign work to 
the most suitable processor.

On the other hand, static partitioning methods [18, 19], 
if not arbitrary (i.e., a static partitioning of work not based 
on information related to the processors or the algorithm), 
requires having accurate knowledge about the relative 
performance of the processors as well as the workload to 
achieve good load balancing between the processors. Fur-
thermore, most static partitioning methods are based on 
models [18, 19], which are made for a specific algorithm and 
platform. Hence, their solution may be inefficient when used 
for a different algorithm (which would require a new model) 

or on a different platform (which would require adapting the 
model for this new platform).

Michael [16] proposes a dynamic partitioning scheme to 
compute k NN searches. Using a work queue, they continu-
ously assign query points to the CPU and the GPU until 
all the work has been computed. As the overall workload 
of the algorithm is determined beforehand, they are able to 
assign more query points and with the highest workloads 
to the GPU and the rest to the CPU. The load balancing of 
the computation is thus managed by the work queue and the 
dynamic work assignment to the different processors.

Dominik and O’Boyle [18] advance a general static parti-
tioning scheme of applications. Their solution relies on dif-
ferent metrics such as the number of computing operations 
and their precision, the number of memory operations, the 
presence of loops, etc., extracted from the code before the 
computation. Hence, they determine an overall workload for 
the algorithm and, if the computation is considered to be 
efficient if executed on both the CPU and GPU, then they 
estimate a work partitioning using the input data size, and 
a model they previously developed using the same applica-
tion and for several fixed static partitioning fractions. [19] 
propose a model to statically assign the work of a fast Fou-
rier transform (FFT) to the CPU and the GPU. Their solu-
tion creates subproblems of the FFT and, following their 
model, assign these subproblems to the most suitable proces-
sor. This model is based on parameters such as previously 
recorded performance, CPU-GPU data transfer rate, memory 
management on the GPU, matrix transposition performance, 
and several other factors.

The dynamic work partitioning strategy we propose in 
this paper, while similar to the one proposed by [16], should 
be more efficient as the way we determine our workload is 
more accurate than their solution. Our static work partition-
ing methods, similarly to other static partitionings [18, 19], 
also propose a performance model (for each of our static par-
titioning strategy). However, we outline the importance of 
determining the overall workload to efficiently partition, by 
proposing an intuitive solution having rather little knowledge 
about the workload, and a second method with an accurate 
knowledge of the workload. The load imbalance between 
the CPU and GPU would show such importance. For com-
parative purposes, we expect that our solution with accurate 
workload knowledge will yield better load balancing than 
the solution with less knowledge of the workload.

3 � Leveraged Work

In this section, we present the leveraged works used to 
design HEGJoin. We use LBJoin [6] for the GPU and Super-
EGO [3] for the CPU, which are two state-of-the-art algo-
rithms for their respective platforms, which are publicly 
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available. For greater detail, we encourage the reader to refer 
to the original papers of Super-EGO [3] and LBJoin [6]. 
Furthermore, we acknowledge that a CPU distance similar-
ity join algorithm has been proposed in the literature by [33] 
that outperforms Super-EGO at high dimensions. However, 
their algorithm has comparable performance to Super-EGO 
in low dimensionality. Therefore, we use Super-EGO and 
not [33] to create HEGJoin, as it is better suited to our low-
dimensional case.

3.1 � GPU Algorithm: LBJoin

The GPU component of HEGJoin is based on the GPU ker-
nel proposed by [6]. This kernel also uses the grid index 
and the batching scheme by [30]. This work is the best dis-
tance similarity join algorithm for low dimensions that uses 
the GPU. (There are similar GPU algorithms but they are 
designed for range queries, see Sect. 2.)

3.1.1 � Grid Indexing

The grid index presented by [30] allows the query points to 
only search for candidate points within its 3d adjacent cells 
(and the query points’ own cell), where d is the data dimen-
sionality. This grid is stored in several arrays in the GPU’s 
global memory: (i) the first array represents only the non-
empty cells to minimize memory usage, (ii) the second array 
stores the cells’ linear id and a minimum and maximum indi-
ces of the points, and (iii) the third array corresponds to the 
position of the points in the dataset and is pointed to by the 
second array. Candidate points are retrieved by searching 
the index in global memory, which yields a set of candidates 
points in the dataset, D. Furthermore, the threads within 
the same warp access adjacent cells in the same lock-step 
fashion, thus avoiding thread divergence. Also, note that we 
modify their work and now construct the index directly on 
the GPU, which is much faster than constructing it on the 
CPU as in the original work.

3.1.2 � Batching Scheme

Computing the �-neighborhood of many query points may 
yield a very large result set and exceed the GPU’s global 
memory capacity. Therefore, in [30], the total execution is 
split into multiple batches, such that the result set does not 
exceed global memory capacity.

The number of batches that are executed, nb , are defined 
by an estimate of the total result set size, ne , and a buffer 
of size ns , which is stored on the GPU. The authors use a 
lightweight kernel to compute ne , based on a sample of D. 

Thus, they compute nb = ne∕ns.1 The buffer size, ns , can be 
selected such that the GPU’s global memory capacity is 
not exceeded. The number of query points, nGPU

p
 , processed 

per batch (a fraction of |D|) are defined by the number of 
batches as follows: nGPU

p
= |D|∕nb . Hence, a smaller number 

of batches will yield a larger number of queries processed 
per batch.

The total result set is simply the union of the results 
from each batch. Let R denote the total result set, where 
R =

⋃nb
l=1

rl , where rl is the result set of a batch, and where 
l = 1, 2,… , nb.

The batches are executed in three CUDA streams, allow-
ing the overlap of GPU computation and CPU-GPU com-
munication, and other host-side tasks (e.g., memory copies 
into and out of buffers), which is beneficial for performance.

3.1.3 � Sort by Workload and Work Queue

The sorting strategy proposed by [6] sorts the query points 
by non-increasing workload. The workload of a query point 
is determined by the sum of candidate points in its own cell 
and its 3d adjacent cells in the grid index. Hence, the grid 
index is used to retrieve the adjacent cells and to find the 
number of points in each of them. This results in a list of 
query points sorted from most to least workload, which is 
then used in the work queue to assign work to the GPU’s 
threads. The consequence of sorting by workload and of 
using this work queue is that threads within the same warp 
will compute query points with a similar workload, thereby 
reducing intra-warp load imbalance. This reduction in load 
imbalance, compared to their GPU reference implementation 
[6], therefore reduces the overall number of periods where 
some threads of the warp are idle and some are computing. 
This yields an overall better response time than when not 
sorting by workload. This queue is stored on the GPU as 
an array, and a variable is used to indicate the head of the 
queue. In this paper, we store this queue on the CPU’s main 
memory to be able to share the work between the CPU and 
the GPU components of HEGJoin. Furthermore, the sum of 
the individual workloads of each query point corresponds to 
the total workload. Since this sorting by workload strategy 
uses the grid index to compute the workload, it allows for 
estimating the workload for any input dimensionality and 
data distribution.

3.1.4 � GPU Kernel

The GPU kernel [6] makes use of a grid index, the batching 
scheme, as well as the sorting by workload strategy and the 

1  In this section, for clarity, and without the loss of generality, we 
describe the batching scheme assuming all values divide evenly.
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work queue presented above. Moreover, we configure the 
kernel [6] to use a single GPU thread to process each query 
point (|D| threads in total). Thus, each thread first retrieves a 
query point from the work queue using an atomic operation. 
Then, using the grid index, the threads search for their non-
empty neighboring cells corresponding to their query point 
and iterate over the found cells. Finally, for each candidate 
point within these cells, the algorithm computes the distance 
to the query point and if this distance is ≤ � , then the key/
value pair made of the query point’s id and the candidate 
point’s id is added to the result buffer r of the batch.

3.2 � CPU Algorithm: Super‑EGO

Similarly to our GPU component, the CPU component of 
HEGJoin is based on the efficient distance similarity join 
algorithm, Super-EGO, proposed by [3]. We detail its main 
features as follows.

3.2.1 � Dimension Reordering

The principle of this technique is to first compute a his-
togram of the average distance between the points of the 
dataset and for each dimension. A dimension with a high 
average distance between the points means that points are 
more spread across the search space, and therefore fewer 
points will join. The goal is to quickly increase the cumula-
tive distance between two points so it reaches � with fewer 
distance calculations, allowing the algorithm to short-circuit 
the distance calculation and continue computing the next 
point.

3.2.2 � EGO Sort

This sorting strategy sorts the points based on their coor-
dinates in each dimension, divided by � . This puts spatially 
close points close to each other in memory and serves as 
an index to find candidate points when joining two sets of 
points. This sort was originally introduced by [2].

3.2.3 � Join Method

The Super-EGO algorithm takes a set of query points and 
computes each point’s result set as follows. First, in main 
memory, Super-EGO recursively creates new partitions, 
until these partitions reach a given size. Next, the join is 
made by comparing the set of query points to this set of 
generated partitions of the input dataset, where the partitions 
that are recursively generated are sets of points spatially co-
located to the set of query points. Then, since the points are 
sorted based on their coordinates and the dimensions have 
been reordered, two partitions are compared only if their 
first point is within � from each other. If they are not, then 

subsequent points will not join either, and the join of the two 
partitions is aborted.

3.2.4 � Parallel Algorithm

Super-EGO also adds parallelism to the original EGO algo-
rithm, using pthreads and a producer–consumer scheme to 
balance the workload between threads. When a new partition 
is recursively created, if the size of the queue is less than 
the number of threads (i.e., some threads have no work), the 
newly created partitions are added to the work queue to be 
shared among the threads. This ensures that no threads are 
left without work to compute.

4 � Heterogeneous CPU‑GPU Algorithm: 
HEGJoin

In this section, we present the major components of our het-
erogeneous CPU-GPU algorithm, HEGJoin, the different 
techniques we propose to partition the workload between 
the CPU and the GPU, as well as improvements made to the 
work we leverage.

4.1 � Shared Work Queue

As mentioned in Sect. 3.1, we leverage the work queue 
stored on the GPU that was proposed by [6], which effi-
ciently balances the workload between GPU threads. How-
ever, to use the work queue for the CPU and the GPU com-
ponents of HEGJoin, we must relocate it to the host/CPU 
to use it with our CPU algorithm component. Because the 
GPU has a higher computational throughput than the CPU, 
we assign the query points with the most work to the GPU, 
and those with the least work to the CPU. Similarly to the 
shared work queue proposed by [16] for the CPU-GPU k NN 
algorithm, the query points need to be sorted based on their 
workload, as detailed in Sect. 3.1.3. However, while query 
points’ workload in [16] is characterized by the number of 
points within each query point’s cell, we define here the 
workload as the number of candidate points within all adja-
cent cells. Our sorting strategy is more representative of 
the workload than in [16], as it yields the exact number of 
candidates that must be filtered for each query point.

Using this queue with the CPU and the GPU requires 
modifying the original work queue [6] to be a double-ended 
queue (deque), as well as defining a deque index for each 
architecture. Since the query points are sorted by work-
load, we set the GPU’s deque index to the beginning of the 
deque (greatest workload) and to the end of the deque for 
the CPU’s index (smallest workload). Therefore, the GPU’s 
workload is configured to decrease while the CPU’s work-
load increases, as their respective index progresses in the 
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deque. Also, note that while np for the CPU ( nCPU
p

 ) is fixed, 
np for the GPU ( nGPU

p
 ) varies based on the dataset character-

istics and on � (Sect. 3.1.2).
As described in Sect. 3, HEGJoin uses two different sorts: 

sorting by workload (Sect. 3.1.3) and Super-EGO ’s EGO-
sort (Sect. 3.2.2). However, as these two strategies sort fol-
lowing different criteria, it is not possible to first sort by 
workload then to EGO-sort (and vice versa), as the first sort 
would be overwritten by the second sort. We thus create a 
mapping between the EGO-sorted dataset and our shared 
work queue, as represented in Fig. 3.

4.2 � Workload Partitioning

As previously described, this paper proposes three differ-
ent methods to partition the work between the CPU and the 
GPU, using the shared work queue presented in Sect. 4.1. 
Proposing these three methods allows us to extensively 
explore work partitioning characteristics, as well as dem-
onstrate the significance of an efficient work partitioning 
method. Our three partitioning methods use the shared deque 
presented in Sect. 4.1, as in all three cases the work still 
needs to be partitioned among threads. Thus, we describe 
these partitioning strategies as follows.

4.2.1 � Dynamic Work Partitioning Strategy

Our dynamic work partitioning strategy assigns work to 
the CPU and GPU on-demand until the queue is empty. 

Constantly querying the queue for a fraction of work pro-
vides good load balancing, as the processors are likely to 
complete their last batch of queries at roughly the same 
time. The CPU and GPU are both assigned a batch size large 
enough to accommodate their relative performance (par-
ticularly for the GPU, to achieve good occupancy), as well 
as to reduce the number of atomic accesses to the queue. 
However, the batch size for the CPu and GPu is also not too 
large, so they are not assigned too many query points as it 
might leave a processor without work to compute while the 
other one is computing a large batch. Figure 2 illustrates 
how the dynamic partitioning strategy works. We describe 
the procedure used to assign the query points to the proces-
sors as follows: 

1.	 We set the GPU’s deque index to 1 and the CPU’s deque 
index to |D|.

2.	 The program terminates if the GPU’s and CPU’s indices 
are at the same position in the deque.

3.	 To assign query points to a GPU stream, we create and 
assign a new batch of queries to this GPU stream and 
increase GPU’s deque index.

4.	 To assign query points to CPU thread, we create and 
assign a new batch of queries to this CPU thread and 
decrease CPU’s deque index.

4.2.2 � Static Partitioning Strategy Based on Query Points

This static work partitioning method splits the number of 
query points between the processors, using a static par-
titioning fraction pq , where 0 ≤ pq ≤ 1 . Hence, from pq 
and a number of query points (|D|), we can determine the 
number of query points nGPU

q
 to assign to the GPU and, 

by extension, to the CPU. This partitioning fraction pq is 
determined based on the estimation of the workload west , 
as a function of the number of query points and � . We 
consider for this partitioning strategy the equal workload 
assumption that we describe as follows.

Equal Workload Assumption In this model, we assume 
that we do not know the workload of each query point. 
Thus, we consider that each query point has the same 

Fig. 2   Representation of our deque as an array. The numbers qi are 
the query points id, the triangles are the starting position of each 
index, and the arrows above it indicate the indices progression in the 
deque

Fig. 3   Illustration of an input dataset D, the shared deque sorted by 
workload Q, the input dataset EGO-sorted E and the mapping M 
between Q and E. The numbers in D, Q, and E correspond to query 

point ids, while the numbers in M correspond to their position in E. 
The numbers below the arrays are the indices of the elements
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workload. For example, if data are largely unstructured, 
similarly to a uniform distribution, then all query points 
would have roughly the same amount of work to compute. 
Then, based on the query throughput of the CPU and GPU, 
we assign each architecture a fraction of the total number 
of queries.

Figure 4 illustrates the static partitioning strategy based 
on query points. Using the equal workload assumption, 
this example shows the case where the model assigns the 
same number of query points to the CPU and GPU. In this 
example, we have an input dataset D sorted by workload 
(Sect. 3.1.3) made of 100 query points ( |D| = 100 ) and 
indexed by i. In this example, our model determines an over-
all workload wtotal

est
= 600 , which, following the equal work-

load assumption, corresponds to each point having an esti-
mated workload west = wtotal

est
∕|D| = 6 . We consider in this 

example that the model determines that the CPU and GPU 
have the same throughput and should therefore be assigned 
the same workload ( wCPU

est
= wGPU

est
 ), and thus the same num-

ber of query points. Depending on the dataset’s character-
istics (such as its distribution), this estimated workload 
might differ from the actual workload to compute, which 
may have an impact on the overall performance of HEGJoin 
when using such a static partitioning strategy, compared to 
the other partitioning strategies we propose in this paper.

Using the equal workload assumption, we propose a 
model to determine the static partitioning fraction pq for 
HEGJoin (where 0 ≤ pq ≤ 1 ). For a specific dataset in d 
dimensions, we consider a reference search distance �r , its 
search volume in d dimensions v(�r) =

�
d∕2

Γ(
d

2
+1)

× �r
d , and the 

corresponding execution time of LBJoin ( TGPU
�r

 ) and Super-
EGO ( TCPU

�r
 ) when computing the distance similarity join on 

d with the reference search distance �r . Hence, for a given 
search distance �s for which we want to determine the work 

partitioning fraction pq , we predict the execution time of 
LBJoin and Super-EGO by scaling their execution time TGPU

�r
 

and TCPU
�r

 by the ratio of the search volume v(�s) over the 
reference search volume v(�r) . The ratio v(�s)∕v(�r) corre-
sponds to the estimated workload increase when the search 
distance increases as well. Thus, we predict the execution 
time of the GPU-only algorithm (LBJoin) TGPU as follows:

Similarly, we predict the execution time of the CPU-only 
algorithm (Super-EGO) TCPU as follows:

We then compute the GPU query throughput (the number of 
query points the GPU can process per second) as 
fGPU
q

= |D|∕TGPU
(�s, �r, T

GPU
�r

) , as well as the CPU query 
throughput f CPU

q
= |D|∕TCPU

(�s, �r, T
CPU
�r

) . In addition, we 
consider the upper bound query throughput as 
fq = fGPU

q
+ f CPU

q
 , and which corresponds to the sum of the 

GPU and CPU query throughput. Using this upper bound 
query throughput fq , we can predict the execution time 
THEGJOIN of HEGJoin when using any of our static partition-
ing strategies. We compute this predicted execution time as 
follows:

In addition to predicting the execution time of HEGJoin, we 
use the upper bound query throughput fq to determine the 
static partitioning fraction pq as the ratio of fGPU

q
 over fq . 

Consequently, we compute the static partitioning fraction 
as follows:

Finally, we use pq to determine the number of query points 
to assign to the GPU as nGPU

q
= |D| × pq . By extension, we 

determine the number of query points to assign to the CPU 
as nCPU

q
= |D| − nGPU

q
.

4.2.3 � Static Partitioning Strategy Based on Candidate 
Points

Static partitioning based on candidate points considers the 
total number of candidate points to refine, as well as the 
number of candidate points of the individual query points. 
Hence, while the previous static partitioning strategy 
assumes an equal workload between the query points, we 
acknowledge here that the query points are likely to each 

(1)TGPU
(�s, �r, T

GPU

�r
) = TGPU

�r
×

v(�s)

v(�r)

(2)TCPU
(�s, �r, T

CPU

�r
) = TCPU

�r
×

v(�s)

v(�r)

(3)THEGJOIN
= |D|∕fq

(4)pq = fGPU
q

∕fq

Fig. 4   Representation of the static partitioning strategy based on the 
query points, where D is the dataset sorted by workload, i refers to 
the indices of the query points in D, and W

est
 the workload of the 

points using the equal workload assumption and that is determined 
by our model (and where wtotal

est
 is the estimated workload of HEG-

Join). As we use the equal workload assumption, each query point is 
therefore assigned the same workload. Furthermore, we consider in 
this example that the model considers the CPU and GPU to have the 
same throughput, and thus assigns the same estimated workload to 
both processors ( wCPU

est
= wGPU

est
 ), i.e., the same number of query points
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have a different workload. We thus propose the unequal 
workload assumption as follows.

Unequal Workload Assumption We consider for this 
model that each query point can have a workload different 
from the other query points. Hence, if a dataset has dense 
regions and sparse regions, the workload that is assigned to 
the query points is an accurate reflection of their workload 
in comparison to the equal workload assumption.

Figure 5 illustrates the static partitioning strategy based 
on the number of candidate points to refine. In this exam-
ple, the model considers that the CPU and GPU have the 
same throughput and should, therefore, be assigned the 
same number of candidate points to refine. Hence, we 
have an input dataset D with 100 query points ( |D| = 100 ) 
that are sorted by their respective workload w, and a total 
number of candidate points to refine wtotal

= 626 . This 
model estimates a number of candidate points to refine 
wtotal
est

= 626 , which is split equally between the CPU and 
the GPU (as the model considers they have the same 
throughput in this example). Thus, the GPU is assigned 
an estimated total number of candidate points to refine 
wGPU
est

= 313 , and wCPU
est

= 313 for the CPU. And, since this 
model considers the unequal workload assumption, the 
GPU’s workload is the same as its estimated workload 
( wGPU

= wGPU
est

 ). The same outcome applies to the CPU 
( wCPU

= wCPU
est

 ). Furthermore, while this example workload 
corresponds to 11 query points for the GPU and 89 query 
points for the CPU (determined by the cumulative work-
load of these query points), the respective total number 

of candidate points to refine of the GPU and the CPU is 
similar ( wGPU

≈ wCPU ). Given that the CPU and GPU are 
considered to have the same throughput in this example, 
this strategy should yield a relatively low load imbalance 
between the CPU and GPU.

This static partitioning strategy uses Equations 1 and 2 to 
predict the execution time of LBJoin and Super-EGO for a 
specific dataset and a given search distance �s . Hence, we 
use the total number of candidate points to refine w, as deter-
mined when sorting the query points by their workload, in 
addition to the predicted execution time TGPU

(�s, �r, T
GPU
�r

) 
to compute the GPU candidate point throughput (the number 
of candidate points the GPU can refine per second) 
fGPU
c

= w∕TGPU
(�s, �r, T

GPU
�r

) . Similarly to the GPU, we com-
pute the number of candidate points throughput refined by 
the CPU f CPU

c
= w∕TCPU

(�s, �r, T
CPU
�r

) . In comparison with 
the static partitioning based on the query points (Sect. 4.2.2), 
we compute here the upper bound throughput of the number 
of candidate points refined fc = fGPU

c
+ f CPU

c
 , which corre-

sponds to the sum of the throughput of the number of can-
didate points refined by the CPU and GPU. We then use this 
upper bound candidate refinement throughput to determine 
the static partitioning fraction pc (where 0 ≤ pc ≤ 1 ), and 
which is computed as follows:

We then use this static partitioning fraction pc to deter-
mine the number of candidate points to assign to the GPU, 
nGPU
c

= w × pc . Similarly, we determine the number of can-
didate points to assign the CPU, nCPU

c
= w − nGPU

c
 . Further-

more, as we consider the unequal workload assumption we 
described above, we need to find the number of query points 
to assign to the GPU, nGPU

q
 , and for which their cumulative 

workload is the closest to the GPU’s assigned workload nGPU
c

 
(by extension, we also find nCPU

q
= |D| − nGPU

q
).

While the GPU and CPU do not use the same indexing 
method, and thus do not yield the same number of candi-
date points to refine, our experimental evaluation (Sect. 5) 
will show that the number of candidate points to refine, w, 
yielded by the grid indexing schemes in LBJoin (Sect. 3.1) 
and Super-EGO (Sect. 3.2) are roughly consistent such that 
we assume w is equal for both indexing schemes.

4.2.4 � Summary of Work Partitioning Strategies

In this section, we summarize the key points of the work 
partitioning strategies we presented in Sects. 4.2.1, 4.2.2 
and 4.2.3 above.

•	 Dynamic Partitioning Strategy This work partitioning 
strategy uses the shared deque proposed in Sect. 4.1 to 

(5)pc = fGPU
c

∕fc

Fig. 5   Representation of the static partitioning strategy based on the 
candidate points, where D is the dataset, i the indices of the query 
points in D, the workload of the points w as used to sort them by their 
workload (and where wTotal is the total number of candidate points to 
refine), and w

est
 the workload of the query points determined by the 

model (and where wtotal

est
 is the total estimated workload of HEGJoin). 

While we consider for this example that the model estimates a work-
load that is equal to the workload of HEGJoin ( wtotal

est
= wTotal ), there 

might be scenarios in which wtotal

est
 and wTotal are different. We consider 

in this example that the model estimates the CPU and GPU to have 
the same throughput and thus assign the same number of estimated 
candidate points to refine to the CPU and to the GPU ( wCPU

est
= wGPU

est
 ). 

Furthermore, as in this example the estimated workload is the same 
as the actual workload of HEGJoin ( wtotal

est
= wTotal ), both processors 

are assigned the same amount of work to compute ( wGPU
= wCPU ), 

i.e., the same number of candidate points to refine
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assign query points to the CPU and GPU on-demand, 
until the deque is empty. The main objective of this par-
titioning method is to have the CPU and GPU finish-
ing their last batch of query points roughly at the same 
time, particularly by frequently querying the deque for 
a new batch to compute. We denote HEGJoin using this 
dynamic partitioning strategy as HEGJoin-Dyn.

•	 Static Partitioning Strategy Based on Query Points The 
static partitioning strategy based on query points that 
we described in Sect. 4.2.2 estimates the workload of 
HEGJoin to assign a number of query points to the CPU 
and GPU. Given a specific dataset, a search distance �r 
and the execution time of LBJoin and Super-EGO, this 
strategy estimates the computation time of HEGJoin by 
scaling the execution time of LBJoin and Super-EGO 
using �r and the search distance used to compute the 
distance similarity join. From this estimated computa-
tion time and the execution time of the GPU-only and 
CPU-only algorithms, we determine the static partition-
ing fraction pq (where 0 ≤ pq ≤ 1 ), and then the number 
of query points to assign to the GPU and CPU, assum-
ing that all the query points have an equal workload. We 
denote HEGJoin using this static partitioning strategy 
based on query points as HEGJoin-SQ.

•	 Static Partitioning Strategy Based on Candidate Points 
This static partitioning strategy based on candidate 
points that we introduced in Sect. 4.2.3 divides the total 
number of candidate points to refine between the CPU 
and GPU. Similarly to the partitioning method based on 
query points, we predict the execution time of LBJoin 
and Super-EGO the same way as we do for the static 
partitioning strategy based on query points. However, we 
use this predicted execution time to determine the static 
partitioning fraction pc and splits the total number of 
candidate points to assign to the CPU and GPU. Hence, 
we determine the number of candidate points to assign 
to the GPU and CPU and then find the number of query 
points whose cumulative workload is the closest to the 
workload assigned to the GPU. Similarly, we determine 
the number of query points to assign to the CPU. We 
denote HEGJoin using this static partitioning strategy 
based on candidate points as HEGJoin-SC.

Table 1 summarizes the properties of HEGJoin-Dyn, 
HEGJoin-SQ, and HEGJoin-SC. HEGJoin-Dyn and 
HEGJoin-SC have mutually exclusive properties, whereas 
HEGJoin-SQ overlaps the properties of HEGJoin-Dyn and 
HEGJoin-SC. By examining these three work partitioning 
strategies, we cover a large range of properties, thus enabling 
us to make a comprehensive examination of work distribu-
tion in HEGJoin.

4.3 � Batching Scheme: Complying 
with Non‑Increasing Workload

Because the batching scheme proposed by [30] and pre-
sented in Sect. 3.1.2 was not designed for non-increasing 
workloads, we had to adapt it to fit our sort by workload 
strategy (Sect.  3.1.3) and its non-increasing workload. 
Indeed, as the batch estimator creates batches with a fixed 
number of query points, and because the query points are 
sorted by workload, this batching scheme creates successive 
batches with a non-increasing workload. Hence, as the exe-
cution proceeds, the batches become smaller, take less time 
to compute, and the overhead of launching many kernels 
may become substantial, particularly when the computation 
could have been executed with fewer batches.

We modify the batching scheme (Sect. 3.1.2) to accom-
modate the sort by workload strategy, and that is represented 
in Fig. 6. While still estimating a fraction of the points, the 
rest of the points get a number of neighbors inferred from 
the maximum value of the two closest estimated points (to 
overestimate and avoid buffer overflow during computation). 
Adding the estimated and the inferred number of neighbors 
yields an estimated result set size ne . We then create the 
batches so they have a consistent result set size rl close to the 
buffer size ns . As the number of estimated neighbors should 
decrease (as their workload decreases), the number of query 
points per batch increases.

When using the dynamic partitioning (Sect. 4.2.1), we 
set a minimum number of batches to 2 × nf  , where nf = 3 is 
the number of CUDA streams used. Therefore, the GPU can 

Table 1   Summary of the different properties of HEGJoin-Dyn, HEG-
Join-SQ, and HEGJoin-SC 

HEGJoin-Dyn HEGJoin-SQ HEGJoin-SC

Workload-oblivious ✓ ✓

Workload-aware ✓

On-demand ✓

Planned ✓ ✓

Architecture-oblivious ✓

Architecture-aware ✓ ✓

Fig. 6   Representation of the new batch estimator. The bold numbers 
are the estimated number of neighbors of those points, while the other 
numbers are inferred, based on the maximum result between the two 
closest estimated points shown in bold
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only initially be assigned up to half of the queries in the work 
queue. This ensures that the GPU is not initially assigned too 
many queries, which would otherwise starve the CPU of 
work to compute. When using a static partitioning strategy 
(Sects. 4.2.2 and 4.2.3), then we set the minimum number 
of batches for the GPU nf = 3 , so each CUDA stream has at 
least a batch to compute. We do not create more batches for 
the CPU, as it already has its own reserved fraction of the 
work, determined by one of the static partitioning strategies.

4.4 � GPU Component: HEGJoin‑GPU

The GPU component of our heterogeneous algorithm, which 
we denote as HEGJoin-GPU and that we can divide into two 
parts (the host and the kernel), remains mostly unchanged 
from the algorithm proposed by [6] and presented in Sect. 3.

Regarding the host side of our GPU component, we 
modify how the kernels are instantiated to use the shared 
work deque presented in Sect. 4.1. Therefore, as the original 
algorithm was looping over all the batches (as given by the 
batch estimator, presented in Sect. 3), the algorithm now 
loops while the shared deque returns a batch to compute 
(Sect. 4.1).

In the kernel, since the work queue has been relocated to 
the CPU, a batch corresponds to a range of queries in the 
deque whose interval is determined when taking a new batch 
from the queue, and can be viewed as a “local queue” on the 
GPU. Therefore, the threads in the kernel update a counter 
that is local to the batch to determine which query point to 
compute, still following the non-increasing workload that 
yields a good load balancing between threads in the same 
warp.

4.5 � CPU Component: HEGJoin‑CPU

The CPU component of HEGJoin, which we denote as HEG-
Join-CPU, is based on the Super-EGO algorithm proposed 
by [3] and presented in Sect. 3.2. We make several modifi-
cations to Super-EGO to incorporate the shared deque we 
use, and we also optimize Super-EGO to improve its per-
formance. We denote this improved version of Super-EGO 
as New-Super-EGO.

As described in Sect. 3.2, Super-EGO uses a queue and a 
producer–consumer system for multithreading. We remove 
this system and replace it with our shared deque. Because 
the threads are continuously taking work from the shared 
deque until it is empty, the producer–consumer system origi-
nally used becomes unnecessary, as the deque informs New-
Super-EGO when it is empty.

The original Super-EGO algorithm recursively creates 
sub-partitions of contiguous points on the input datasets 
until their size is suited for joining. As one of the partitions 

is now taken from our deque, which is sorted by workload, it 
no longer corresponds to a contiguous partition of the input 
dataset. Thus, we loop over the query points of the batch 
given by the deque to join it with the other points in the 
partition. This optimization requires the use of the mapping 
presented in Sect. 4.1 and illustrated in Fig. 3.

Super-EGO uses qsort from the C standard library to 
EGO-sort, and we replace it by the more efficient and paral-
lel boost::sort::sample_sort algorithm, a stable sort from 
the Boost C++ library. This allows New-Super-EGO to start 
its computation earlier than Super-EGO would, as it is faster 
than qsort. We use as many threads to sort as we use to 
compute the join.

Finally, in contrast to the original Super-EGO algorithm, 
New-Super-EGO is now capable to compute and to store 
data using 64-bit floats instead of only 32-bit floats.

5 � Experimental Evaluation

In this section, we present the experimental evaluation we 
conducted to measure the performance of HEGJoin against 
the work it leverages (LBJoin and Super-EGO), as well as 
the efficiency of the different work partitioning strategies we 
propose in this paper.

5.1 � Selectivity

We report the selectivity as defined by [3] of our experi-
ments as a function of � . We define the selectivity 
S = (|R| − |D|)∕|D| , where R is the result set and D is the 
input dataset. The selectivity thus corresponds to the average 
number of neighbors found per query point, excluding the 
query points from finding themselves.

5.2 � Datasets

In this section, we present the real-world and synthetic data-
sets we use to evaluate the performance of HEGJoin and our 
partitioning strategies. We detail the real-world datasets that 
we select as follows:

•	 SW- [34], composed of 1.86M or 5.16M points in two 
dimensions representing the latitude and longitude of the 
objects, and adding the total number of electrons as the 
third dimension.

•	 SDSS [35], composed of a sample of 15.23M galaxies in 
two dimensions.

•	 Gaia [36], in which we select the position of 50M objects 
from the Gaia catalog.
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•	 OSM [37], which is a collection of GPS point data 
from OpenStreetMap, and in which we also select 50M 
objects.

In addition to the real-world datasets, we conduct experi-
ments on exponentially distributed synthetic datasets made 
of 2M and 10M points spanning two to eight dimensions. 
(We detail later the datasets used to evaluate the static par-
titioning in particular.) These datasets are named using the 
dimensions and number of points; for example, Expo3D2M 
is a three-dimensional dataset containing 2M points. We 
elect to use an exponential distribution (with � = 40 ) as this 
distribution contains over-dense and under-dense regions, 
similarly to the real-world datasets we select. Finally, expo-
nential distributions yield a high load imbalance between 
the points and thus should illustrate the performance of 
HEGJoin when there is a load imbalance between the CPU 
and GPU. Furthermore, we do not use uniformly distributed 
datasets, as this type of dataset would not yield load imbal-
ance, as all the query points would have roughly the same 
workload. We summarize these real-world and exponentially 
distributed synthetic datasets in Table 2.

5.3 � Methodology

We conduct all our experiments on the two following 
platforms:

•	 Platform 1 2 × Intel Xeon E5-2683-v4 (with 2 × 16 
cores), 256 GiB of main memory, and an Nvidia Titan X 
with 12 GiB of global memory.

•	 Platform 2 2 × Intel Xeon E5-2620-v4 (with 2 × 8 cores), 
128 GiB of main memory, and an Nvidia Quadro GP100 
with 16 GiB of global memory.

While we systematically present the results of the experi-
ments using Platform 1, we only show the results of the 
experiments using Platform 2 in Fig. 13. The code executed 
by the CPU is written in C++, while the GPU code is writ-
ten using CUDA. We use the GNU compiler and use the O3 
optimization flag for all experiments.

We summarize the different implementations we evalu-
ate as follows. For clarity, we differentiate between similar 
algorithm components since they may use slightly differ-
ent experimental configurations. For example, we make 
the distinction between the CPU component of HEGJoin, 
HEGJoin-CPU, and the original Super-EGO algorithm.

•	 LBJoin: the GPU algorithm proposed by [6], using 3 
GPU streams (managed by 3 CPU threads), 256 threads 
per block, ns = 5 × 107 key/value pairs, where the dataset 
is stored as 64-bit floats, and nGPU

p
 is given by the batch 

estimator presented in Sect. 4.3. This configuration is 
used on both platforms.

•	 Super-EGO: the CPU algorithm developed by [3], using 
32 (16) CPU threads on Platform 1 (Platform 2), and we 
use 32-bit floats to store the dataset.

•	 New-Super-EGO: our optimized version of Super-EGO 
as presented in Sect. 4.5 that uses the sorting by work-
load strategy, using 32 (16) CPU threads on Platform 1 
(Platform 2), and where the dataset is stored as 64-bit 
floats.

•	 HEGJoin-GPU: the GPU component of HEGJoin, using 
the same configuration as LBJoin and one of the work 
partitioning strategies we propose (Sect. 4.2).

•	 HEGJoin-CPU: the CPU component of HEGJoin, using 
the same configuration as New-Super-EGO and one of 
the work partitioning strategies (with nCPU

p
= 1, 024 when 

using the dynamic partitioning and the shared deque).
•	 HEGJoin: the heterogeneous algorithm that combines 

HEGJoin-CPU and HEGJoin-GPU. HEGJoin-Dyn 

Table 2   Summary of the 
datasets used to conduct our 
experiments. |D| denotes 
the number of points, d the 
dimensionality, and S the 
selectivity range for the values 
of � we use

The Expo- datasets are exponentially distributed synthetic datasets (using � = 40 ), while the others are 
real-world datasets

Dataset |D| d S Dataset |D| d S

Expo2D2M 2 M 2 397–9.39 K Expo2D10M 10 M 2 80–1.99 K
Expo3D2M 2 M 3 64–6.70 K Expo3D10M 10 M 3 9–1.06 K
Expo4D2M 2 M 4 23–9.26 K Expo4D10M 10 M 4 3–1.63 K
Expo6D2M 2 M 6 0–2.68 K Expo6D10M 10 M 6 0–499
Expo8D2M 2 M 8 0–157 Expo8D10M 10 M 8 0–167
SW2DA 1.86 M 2 295–5.82 K SW2DB 5.16 M 2 91–2.03 K
SW3DA 1.86 M 3 239–13.20 K SW3DB 5.16 M 3 33–2.13 K
Gaia 50 M 2 19–455 OSM 50 M 2 67–571
SDSS 15.23 M 2

2
1–31
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denotes HEGJoin when using the dynamic partitioning 
strategy, HEGJoin-SQ denotes HEGJoin when using the 
static partitioning strategy based on query points, while 
HEGJoin-SC denotes HEGJoin when using the static par-
titioning strategy based on candidate points.

HEGJoin-CPU and HEGJoin-GPU, as part of HEGJoin, 
each compute a fraction of the work. LBJoin, Super-EGO, 
New-Super-EGO and HEGJoin are standalone algorithms, 
and thus compute all the work. All response times are 
averaged over three time trials and include the end-to-end 
computation time, i.e., the time to construct the grid index 
on the GPU, sort by workload, reorder the dimensions and 
to EGO-sort, and the time to join. Note that some of these 
time components may overlap (e.g., EGO-sort and GPU 
computation may occur concurrently).

5.4 � Results

In this section, we present the results of our experimental 
evaluation. We provide a roadmap for the organization of 
our results as follows:

•	 In Sect. 5.4.1, we present the performance of New-
Super-EGO when compared to Super-EGO.

•	 In Sect. 5.4.2, we compare the search space pruning 
efficiency of the indexes used by New-Super-EGO and 
LBJoin.

•	 In Sect. 5.4.3, we outline the accuracy of the models 
used by HEGJoin-SQ and HEGJoin-SC that we pro-
posed in Sects. 4.2.2 and 4.2.3.

•	 After the baseline performance is demonstrated in 
Sects. 5.4.1–5.4.3, in Sect. 5.4.4 we show the perfor-
mance of HEGJoin-Dyn, HEGJoin-SQ and HEGJoin-
SC, as compared to the leveraged algorithms, New-
Super-EGO and LBJoin.

•	 In Sect. 5.4.5, we evaluate the efficiency of our shared 
work queue by measuring the load imbalance between 
the CPU and GPU.

•	 In Sect. 5.4.6, we assess the overhead incurred by the 
data transfers between the CPU and GPU when using 
HEGJoin.

5.4.1 � Performance of New‑Super‑EGO

In this section, we evaluate the performance of New-Super-
EGO, the optimized version of Super-EGO. The major opti-
mizations include a different sorting algorithm, using the 
sorting by workload strategy and work queue (Sect. 4.5). The 
experiments in this section were conducted on a selection of 
datasets from Table 2. The results we show in this section 
are from using Platform 1.

We evaluate the performance of EGO-sort using the par-
allel sample_sort algorithm from the C++ Boost library 
over the qsort algorithm from the C standard library. sam-
ple_sort is used by New-Super-EGO (and thus by HEG-
Join), while qsort is used by Super-EGO. Figure 7a plots the 
speedup of sample_sort over qsort on our synthetic data-
sets. We observe an average speedup of 7.18× and 10.55× 
on the 2M and 10M points datasets, respectively. Note that 
we elect to use the sample_sort as the EGO-sort needs to 
be stable.

Figure 7b plots the speedup of New-Super-EGO over 
Super-EGO on the SW- real-world datasets. New-Super-
EGO achieves an average speedup of 1.63 × over Super-
EGO. While New-Super-EGO stores data as 64-bit floats, 
Super-EGO only uses 32-bit floats and thus has a perfor-
mance advantage compared to New-Super-EGO. The over-
all speedup is explained by using sample_sort over qsort, 
and the sorting by workload strategy with the work queue. 
Therefore, New-Super-EGO largely benefits from balancing 
the workload between its threads and from using the work 
queue.

Fig. 7   a Speedup to EGO-Sort 
our exponentially distrib-
uted synthetic datasets using 
sample_sort from the Boost 
library over qsort from the C 
standard library. S = 0 – 9.39K 
and S = 0 – 1.99K on the 2M 
and 10M points datasets, 
respectively. b Speedup of New-
Super-EGO over Super-EGO 
on the SW- real-world datasets. 
Results from Platform 1
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5.4.2 � Candidate Point Pruning Efficiency of LBJoin 
and New‑Super‑EGO

In this section, we explore the pruning efficiency of the grid 
when used by LBJoin and when used by New-Super-EGO. 
As we mentioned in Sect. 4.2.3, because LBJoin and New-
Super-EGO use two different grid indexes, the pruning of 
the search space may yield a different number of candidate 
points to refine. Hence, we compare in Table 3 the number of 
candidate points refined by LBJoin and New-Super-EGO, as 
well as the ratio of the number of candidate points refined by 
LBJoin over the number of candidate points refined by New-
Super-EGO on a selection of datasets. We observe that in 
lower dimensions, the difference in the number of candidate 
points refined by LBJoin and New-Super-EGO is relatively 
low, as the ratio is around 1. However, as dimensionality 
increases, we observe that this ratio tends to decrease, indi-
cating that New-Super-EGO becomes less efficient at prun-
ing the search space than LBJoin. The results we show in 
this section are from Platform 1.

5.4.3 � Model Validation for HEGJoin‑SQ and HEGJoin‑SC

In this section, we evaluate the accuracy of the models we 
propose for the static partitioning strategies based on query 

points (Sect. 4.2.2) and based on the number of candidate 
points to refine (Sect. 4.2.3). The results we show in this 
section are from Platform 1.

Figure 8 plots the modeled execution time of LBJoin as 
TGPU and the modeled execution time of New-Super-EGO 
as TCPU on a selection of datasets. We observe that in 2D 
(Fig. 8a and b), the model determines an execution time sim-
ilar to the execution time of LBJoin and New-Super-EGO. 
In 4D (Fig. 8c), while the modeled time for LBJoin is accu-
rate, the modeled time of New-Super-EGO is overestimated 
when 𝜖 > 2.4 × 10−3 . On the Expo6D10M dataset (Fig. 8d), 
we observe that the modeled time of both LBJoin and New-
Super-EGO are overestimated when 𝜖 > 4.8 × 10−3 . Thus, 
we observe that the model may sometimes not accurately 
predict the response time of HEGJoin and, therefore, may 
yield a poor distribution of the work to the CPU and GPU.

This poor distribution is particularly impactful when the 
execution time of a processor is overestimated, while the 
execution time of the other processor is underestimated. As 
the model yields fq = fc , the workload of the static parti-
tioning based on the query points is likely to be higher than 
the workload of the static partitioning based on the num-
ber of candidate points to refine. Indeed, because the query 
points are sorted by their workload in a non-increasing order 
(Sect. 3.1.3), the number of query points determined by the 

Table 3   Comparison of the 
number of candidate points 
refined by LBJoin vs. New-
Super-EGO, and ratio of the 
number of candidate points 
refined by LBJoin over the 
number of candidate points 
refined by New-Super-EGO 
on a selection of our datasets 
(Table 2)

Results from Platform 1

Dataset � S LBJoin New-Super-EGO Ratio

SW2DA 1.5 5.82 K 28,441,701,752 27,786,778,388 1.02
SDSS 0.002 31 65,531,735,119 66,154,801,616 0.99
SW3DA 3.0 13.20 K 90,349,946,258 87,855,196,567 1.03
Expo2D2M 0.002 9.39 K 51,789,286,408 50,121,273,123 1.03
Expo2D10M 0.0004 1.99 K 56,439,981,246 54,645,837,741 1.03
Expo4D2M 0.01 9.26 K 113,929,159,776 177,787,029,288 0.64
Expo4D10M 0.004 1.63 K 217,420,698,818 216,050,585,244 1.01
Expo8D2M 0.015 157 77,827,299,052 108,430,322,625 0.72
Expo8D10M 0.012 167 207,650,110,734 374,000,045,202 0.56
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Fig. 8   Comparison of the modeled execution times TGPU and TCPU vs. their corresponding reference execution times LBJoin and New-Super-
EGO on a selection of datasets: (a) SW2DA, (b) Gaia, (c) Expo4D10M and (d) Expo6D10M. The results from Platform 1
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static partitioning fraction fq will very likely have a cumula-
tive workload higher than the workload yielded by the static 
partitioning of the candidate points determined by the static 
partitioning fraction fc.

Figure 9 plots the modeled execution time of HEGJoin 
as determined by the static partitioning model (Sect. 4.2.2) 
vs. the response time of HEGJoin-SQ and HEGJoin-SC 
on a selection of datasets. We observe on the 2D datasets 
(Fig. 9a and b) that the modeled execution time for HEG-
Join is slightly underestimated compared to the execution 
time of HEGJoin-SQ and HEGJoin-SQ. As we mentioned 
before, low-dimensional searches are memory-bound, a 
bottleneck that the model is unable to capture and thus to 
include in its modeled time. Indeed, as we consider the upper 
bound throughput as the sum of LBJoin and New-Super-
EGO respective throughput, we assume that concurrently 
using the CPU and the GPU scales perfectly, without said 
bottlenecks. Nevertheless, the modeled execution time of 
HEGJoin is overall similar to the execution time of HEG-
Join-SQ and HEGJoin-SC. On the Expo4D10M, and despite 
its overestimation of the modeled time of New-Super-EGO 
(Fig. 8c), the modeled execution time of HEGJoin is very 
similar to the execution time of HEGJoin-SQ and HEGJoin-
SC. Finally, the overestimation of both the modeled time of 
LBJoin and New-Super-EGO on the Expo6D10M dataset 
(Fig. 8d) is also reflected in Fig. 9d, as the modeled execu-
tion time of HEGJoin is also overestimated compared to the 
execution time of HEGJoin-SQ and HEGJoin-SC. However, 
we observe that the modeled execution time of HEGJoin 
is very similar to the modeled execution time of LBJoin 
(Fig. 8d), which means that the model considers, for this 
dataset, that HEGJoin is mostly relying on the GPU to com-
pute the majority of the work. On the Expo6D10M dataset, 
we would thus expect HEGJoin-SQ and HEGJoin-SC to have 
a rather high load imbalance, as the CPU is likely to have 
little work to compute, and therefore to have to wait for the 
GPU to finish its computation. We confirm this expectation 
in Sect. 5.4.5 when evaluating the load imbalance of the 
partitioning strategies we propose.

5.4.4 � Performance of the Work Partitioning Strategies

In this section, we evaluate the performance of our three 
work partitioning strategies, i.e., HEGJoin-Dyn, HEGJoin-
SQ, and HEGJoin-SC. We compare their performance to 
LBJoin and New-Super-EGO. While we show results for a 
selection of our synthetic datasets (Fig. 10) that span mul-
tiple dimensions and size, we show the results on all our 
real-world datasets (Fig. 11). The results we show in this 
section are from Platform 1.

Performance on Exponential Datasets Fig. 10 plots the 
response time of HEGJoin-Dyn, HEGJoin-SQ, HEGJoin-
SC, LBJoin, and New-Super-EGO on the (a) Expo2D2M, 
(b) Expo2D10M, (c) Expo4D10M, (d) Expo6D10M, (e) 
Expo8D2M, and (f) Expo8D10M datasets. We select these 
datasets as they span multiple dimensions and differ-
ent sizes. We observe on most datasets (Fig. 10a–d) that 
HEGJoin-Dyn and HEGJoin-SC overall yield similar perfor-
mance, while HEGJoin-SQ is rather inefficient as it does not 
substantially improve the execution time of either LBJoin 
or New-Super-EGO. Thus, using the number of candidate 
points in the model that is used to statically partition the 
work yields a better work distribution than not considering 
the candidate points.

In Fig. 10, we observe on our highest dimensional data-
sets, and more particularly for the intermediate values of 
� (Expo8D2M where � = 0.9 × 10−2 , and Expo8D10M 
where � = 0.72 × 10−2 ), that HEGJoin-Dyn response time 
does not monotonically increase with � as it is the case in 
lower dimensions. This occurs because few batches are 
executed on the GPU, and which take a significant amount 
of time. This prevents the CPU from taking work from the 
work queue, thereby increasing the load imbalance between 
the CPU and GPU. At higher values of � , there is less 
load imbalance between the CPU and GPU; therefore, the 
response time decreases. On the other hand, we find that 
on these datasets (Expo8D2M and Expo8D10M), HEGJoin-
SQ is often the most efficient partitioning strategy, while 
the performance of HEGJoin-SC is between LBJoin and 
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Fig. 9   Comparison of the modeled execution time of HEGJoin as determined by the static partitioning model vs. the response time of HEGJoin-
SQ and HEGJoin-SC on a selection of datasets: a SW2DA, b Gaia, c Expo4D10M and d Expo6D10M. Results from Platform 1
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Fig. 10   Response time of HEGJoin-Dyn, HEGJoin-SQ, HEGJoin-
SC, LBJoin, and New-Super-EGO on a Expo2D2M, b Expo2D10M, 
c Expo4D10M, d Expo6D10M, e Expo8D2M, and f Expo8D10M. S 

is in the range a 397–9.39 K, b 80–1.99 K, c 3–1.63 K, d 0–499, e 
0–157, and f 0–167. Results from Platform 1
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New-Super-EGO. If we examine LBJoin and New-Super-
EGO execution times for the median value of � , we observe 
that the CPU is more efficient than the GPU. Hence, the 
model assumes that the CPU is consistently more efficient 
for other values of � and will therefore assign more work 
to the CPU. However, the LBJoin execution time does not 
increase as much as the model predicted, while New-Super-
EGO execution time increased more than what the model 
predicted. Hence, the model will assign a higher fraction of 
the work to the CPU than it is capable of processing within 
the execution time estimated by the model. On these par-
ticular datasets (Expo8D2M and Expo8D10M), since the 
execution time of LBJoin is overestimated and the execu-
tion time of New-Super-EGO is underestimated, the static 
partitioning based on query points ends up being the most 
efficient partitioning as � increases, since most of the work 
is assigned to the GPU.

As described in Section 1, we choose to focus on low 
dimensionality. Observe here that the execution time of 
New-Super-EGO significantly degrades with dimensionality 
(Fig. 10d–f). Therefore, if we were to employ New-Super-
EGO at higher dimensions than that explored in this work, 
the algorithm would have a negligible impact on perfor-
mance of HEGJoin. In higher dimensions, it would be more 
worthwhile to consider the use of a different CPU algorithm 
to replace New-Super-EGO, such as that proposed by [33].

Performance on Real-World Datasets Fig. 11 plots the 
response time of HEGJoin-Dyn, HEGJoin-SQ, HEGJoin-
SC, LBJoin, and New-Super-EGO on the (a) SW2DA, (b) 
SW3DA, (c) SW3DB, (d) SDSS, (e) Gaia, and (f) OSM 
datasets. We observe on these real-world datasets a similar 
behavior as on the Expo2D2M and Expo2D10M datasets 
(Fig. 10a and b). Thus, we observe that the static parti-
tioning based on the number of candidate points to refine, 
HEGJoin-SC, achieves similar performance as the dynamic 

partitioning HEGJoin-Dyn. Furthermore, we can see that 
both of these partitioning strategies achieve similar or better 
performance than the best performance yielded by LBJoin 
or New-Super-EGO. Furthermore, we observe that HEG-
Join-SQ yields poor performance. As we explained in Sec-
tion 5.4.3, because the execution time may be overestimated 
or underestimated, a processor can be assigned too much 
work or too little work relative to its real computational 
throughput.

Candidate Point Refinement Throughput Table 4 pre-
sents the candidate point refinement throughput (as previ-
ously defined in Sect. 4.2.3) for LBJoin, New-Super-EGO, 
HEGJoin-Dyn, the upper bound (the total throughput given 
by adding the throughput of the standalone LBJoin and 
New-Super-EGO algorithms), and the ratio of the through-
put HEGJoin-Dyn achieves compared to this upper bound 
throughput. The candidate throughput corresponds to the 
number of candidate points to refine, divided by the response 
time of the algorithm, as shown in Figs. 10 and 11. We 
observe a relatively high performance ratio, demonstrating 
that we almost reach the performance upper bound of HEG-
Join. Moreover, we also observe that on the Expo8D10M 
dataset, we achieve a ratio of more than 1. We explain this 
by the fact that Expo8D10M is exponentially distributed 
and therefore has very dense regions, as well as very sparse 
regions. Thus, the throughput of LBJoin includes query 
points with a very low workload, thus increasing its over-
all throughput compared to what HEGJoin-GPU achieves. 
Similarly, the throughput of New-Super-EGO includes query 
points with a very large workload, thus reducing its over-
all throughput compared to what HEGJoin-CPU achieves. 
When combining the two algorithms, we have the GPU com-
puting the query points with the largest workload and the 
CPU the points with the smallest workload. The respective 
throughput of each component should, therefore, be lower 

Table 4   Throughput of candidate points refined (candidates/s) by LBJoin, New-Super-EGO, the upper bound of LBJoin plus New-Super-EGO, 
HEGJoin-Dyn, and the performance ratio between HEGJoin-Dyn and the upper bound across several datasets. Results from Platform 1

Dataset � S LBJoin New-Super-EGO Upper Bound HEGJoin-Dyn Perf. Ratio

Expo2D2M 0.002 9392 893,877,929 2,812,071,408 3,705,949,337 3,185,072,965 0.86
Expo4D2M 0.01 9262 672,847,132 1,777,133,999 2,449,981,131 2,209,642,354 0.90
Expo8D2M 0.015 157 3,881,606,529 1,410,542,112 3,659,149,867 3,372,066,683 0.92
Expo2D10M 0.0004 1985 1,601,136,521 2,042,081,926 3,643,218,447 3,335,696,291 0.92
Expo4D10M 0.004 1630 2,809,451,506 2,334,736,697 5,144,188,204 4,531,486,011 0.88
Expo8D10M 0.012 167 2,233,156,849 1,010,004,731 3,243,161,581 4,013,791,675 1.24
SW2DA 1.5 5818 1,024,556,980 3,419,458,232 4,444,015,212 3,520,012,593 0.79
SDSS 0.002 31 1,798,770,443 2,208,414,897 4,007,185,340 3,673,303,538 0.92
Gaia 0.0003 455 1,696,613,608 2,347,964,353 4,044,577,961 2,903,111,440 0.72
OSM 0.00003 571 1,287,786,499 2,725,941,526 4,013,728,025 2,596,190,956 0.65
SW3DA 3.0 13,207 796,136,506 4,360,015,024 5,156,151,530 4,354,214,277 0.84
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for the GPU and higher for the CPU, than their throughput 
when computing the entire dataset.

Performance ratios lower than 1 (Table 4) indicate that 
there are several bottlenecks, including contention for mem-
ory bandwidth, with the peak bandwidth potentially reached 
when concurrently storing the results from the CPU and the 
GPU. We particularly observe this on low dimensionality 
and for low selectivity, as it yields less computation and 
higher memory pressure than in higher dimensions or for 
higher selectivity (Figs. 10 and 11). We confirm this by 
examining the ratio of kernel execution time over the time 
to compute all batches of LBJoin. Focusing on the datasets 
with the minimum and maximum performance ratio from 
Table 4, we find that on Gaia, LBJoin has a kernel execu-
tion time ratio of 0.06, while on Expo8D10M, LBJoin has 
a kernel execution time ratio of 0.98. Hence, most of the 
Gaia execution time is spent on memory operations, while 
on Expo8D10M, the execution time is mostly spent on com-
putation. When executing LBJoin on Gaia (and other data-
sets with low ratios in Table 4), we observe that the use of 
the GPU hinders the CPU by using a non-negligible fraction 
of the total available memory bandwidth.

5.4.5 � Load Balancing Efficiency

We define the load imbalance of HEGJoin as follows. Given 
the total execution time T, the time tGPU ( tCPU ) at which the 
GPU (CPU) ends its work, we characterize the load imbal-
ance ratio as k = (|tGPU − tCPU|)∕T  . A load imbalance ratio 
close to 0 therefore indicates that the CPU and GPU ended 
their work at roughly the same time, and thus, that the load 
imbalance between the CPU and GPU is low. The results we 
show in this section are from Platform 1.

Figure 12 plots the load imbalance ratio of (a) HEGJoin-
Dyn, (b) HEGJoin-SQ and (c) HEGJoin-SC across all the 
datasets we present in Table 2. We observe in Fig. 12a that 
HEGJoin-Dyn (Sect.  4.2.1) achieves a fairly good load 
balancing, as it achieves an average load imbalance ratio 
of k = 0.14 . Furthermore, the datasets in higher dimen-
sions (such as Expo6D- and Expo8D-) are distinguished 
by a high load imbalance (with the highest load imbalance 
ratio, k = 0.62 , recorded on the Expo8D10M dataset and for 
� = 0.72 × 10−2 ). We explain this by the fact that the compu-
tation on these datasets is made in only a few large batches 
(Sect. 3.1.2) and thus explained by the CPU and GPU less 
frequently accessing the shared deque than in lower dimen-
sions. While having more batches with a reduced size would 
improve load balancing, it would negatively impact the 
GPU’s performance, as the GPU may be underutilized.

Figure 12b plots the load imbalance ratio of the static par-
titioning based on query points, HEGJoin-SQ (Sect. 4.2.2). 
We immediately observe a high average load imbalance of 
k = 0.53 , meaning that on average, the CPU or GPU spend 
half of the execution time idle. Hence, HEGJoin-SQ yields 
a load imbalance of up to k = 0.91 on the Expo4D10M 
dataset when � = 4.0 × 10−3 . Considering that HEGJoin-
SC is usually more efficient than HEGJoin-SQ (Figs. 10 
and 11) and yet uses the same model to predict the execution 
time, the high load imbalance of HEGJoin-SQ is therefore 
explained by how the work is partitioned between the CPU 
and GPU, based on query points. Indeed, as we explained 
above (Sect. 5.4.4), on datasets such as Expo8D2M and 
Expo8D10M (Fig. 10e and f), as the query points are sorted 
by workload, the workload assigned to the GPU when par-
titioning based on query points is higher than the workload 
assigned when partitioning based on the number of candi-
date points to refine. Examining the average load imbalance 
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Fig. 12   Load imbalance ratio of (a) HEGJoin-Dyn, b HEGJoin-SQ 
and c HEGJoin-SC on all the datasets we use for our experiments, 
and we described in Table 2. The horizontal dashed line corresponds 

to the average load imbalance k, and is as follows: a k = 0.14 , b 
k = 0.53 and c k = 0.32 . Results from Platform 1
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across all values of � of the SW2DA dataset, we observe that 
the average load imbalance is k = 0.12 for HEGJoin-Dyn, 
k = 0.22 for HEGJoin-SC, and k = 0.57 for HEGJoin-SQ. 
However, on the Expo8D10M dataset and for all the val-
ues of � we experiment on this dataset with, the average 
load imbalance is k = 0.46 for HEGJoin-Dyn, k = 0.66 for 
HEGJoin-SC, while k = 0.29 for HEGJoin-SQ. Hence, the 
situations where HEGJoin-SQ achieves a low load imbal-
ance are essentially exceptions to the rather bad performance 
of HEGJoin-SQ, as they are the result of the model’s inac-
curacy in such situations.

Figure 12c plots the load imbalance ratio of HEGJoin-
SC, i.e., HEGJoin using the static partitioning based on 
the number of candidate points to refine (Sect. 4.2.3). We 
observe an average load imbalance ratio of k = 0.32 , which 
is between the average load imbalance ratio of HEGJoin 
( k = 0.14 ) and HEGJoin-SQ ( k = 0.53 ). Furthermore, the 
highest load imbalance yielded by this static partitioning 
strategy is on the Expo8D10M dataset when � = 0.96 × 10−2 , 
where k = 0.89 . The issue on this dataset is the same as 
when partitioning based on query points: the model is not 
able to predict situations where the execution time of one of 
the processors does not increase as the model predicts it will 
(in this case the execution time of LBJoin). Considering that 
the execution time of LBJoin is overestimated and that the 
execution time of New-Super-EGO is underestimated, the 
GPU is assigned a lower workload and the CPU a higher 
workload than what they are able to process within the mod-
eled execution time. Finally, and despite HEGJoin-SC hav-
ing a higher load imbalance than HEGJoin-Dyn, we observe 
that HEGJoin-SC is roughly as efficient as HEGJoin-Dyn on 
many datasets and values of �.

5.4.6 � Data Transfer Overhead of HEGJoin

In this section, we evaluate the overhead of the data trans-
fers between the CPU’s main memory and the GPU’s 
global memory, regardless of their direction (from the 
CPU to the GPU, and vice versa), which is known to be 
a bottleneck due to the relatively low memory bandwidth 
of the PCIe-3 interconnect [38]. In Table 5, we report the 
time taken by all the data transfers between the CPU and 
GPU, the total execution time, and the ratio of the data 
transfers time to the total execution time, across a selec-
tion of datasets and � values. The values are recorded when 
using HEGJoin-Dyn on Platform 2, over a single trial, and 
are measured using the Nvidia Visual Profiler. A ratio 
close to zero indicates that the data transfers are negligible 
relative to the total execution time of the algorithm, while 
higher ratios account for a large fraction of the total execu-
tion time and thus may degrade performance. Recall that 
we use three streams to overlap data transfers with com-
putation (Sect. 3.1.2). However, since there is not a direct 
way to account for the overlap of data transfers with kernel 
execution (computation), we consider here that no such 
overlap occurs. Therefore, ratios we report in Table 5 cap-
ture the upper bound (worst-case) data transfer overhead.

We observe in Table 5 that the ratios of the data trans-
fers time to the total execution time of HEGJoin-Dyn are 
relatively low across our experiments, despite only cap-
turing the upper bound as described above. Furthermore, 
the experiments with the highest selectivity (e.g., SW3DA 
for � = 3.0 ) or the largest datasets (e.g., Gaia) yield the 
highest overhead ratios, due to the large result set size 
that must be transferred from the GPU to the CPU, or 
large datasets that must be transferred from the CPU to the 

Table 5   Total time taken by 
data transfers between the CPU 
and the GPU, the total execution 
time of the algorithm, and the 
upper bound overhead ratio of 
the data transfers time to the 
execution time when using 
HEGJoin-Dyn 

A ratio close to zero indicates an insignificant overhead incurred by data transfers compared to the total 
execution time. The ratios do not account for the periods of time where the data transfers and the kernel 
executions overlap. The times were recorded on the Nvidia Visual Profiler over a single time trial using 
Platform 2

Dataset � S Data transfer 
time (s)

Execution time (s) Upper bound 
overhead 
ratio

Expo2D2M 0.002 9342 5.11 30.99 0.16
Expo4D2M 0.01 9262 9.22 81.97 0.11
Expo8D2M 0.015 157 0.22 18.47 0.01
Expo2D10M 0.0004 1985 6.69 27.16 0.25
Expo4D10M 0.004 1630 8.21 55.27 0.15
Expo8D10M 0.012 167 1.19 116.61 0.01
SW2DA 1.5 5818 2.66 13.91 0.19
SDSS 0.002 31 7.72 29.74 0.26
Gaia 0.0003 455 9.77 37.83 0.26
OSM 0.00003 571 8.73 36.98 0.24
SW3DA 3.0 13,207 9.41 40.73 0.23
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GPU. However, in these cases, the relatively high selec-
tivity also yields a large number of batches to compute, 
making it easier to overlap data transfers with kernel exe-
cutions, which we could not account for here. On experi-
ments with a lower selectivity (e.g., Expo8D10M when 
� = 0.012 ), the data transfers account for an insignificant 
amount of time compared to the high total execution time 
of HEGJoin-Dyn, due to the relatively small size of the 
result set that needs to be transferred from the GPU to 
the CPU. Overall, and given that the overhead ratios in 
Table 5 consist of an upper bound, we consider that the 
data transfers between the CPU and the GPU are margin-
ally impacting the performance of HEGJoin.

5.5 � Discussion

We summarize and discuss the major research findings 
in this paper. We find that HEGJoin using the on-demand 
work queue (HEGJoin-Dyn) outperforms the two static 
partitioning methods (HEGJoin-SQ and HEGJoin-SC) on 
most values of � . Despite this finding, HEGJoin-Dyn does 
not achieve low load imbalance between the CPU and GPU 
components of the algorithm across all experimental sce-
narios (e.g., in Fig. 12 there is a mean load imbalance of 
k = 0.14 ). Therefore, dynamically assigning work to the 
CPU and GPU components of the algorithm is challeng-
ing, even when distributing the work on-demand. Part of 
the reason load imbalance occurs is because the perfor-
mance characteristics are fundamentally data-dependent 
regardless of the self-join algorithm (assuming such an 
algorithm uses the search-and-refine strategy). Query 
points have differing amounts of work to compute, so it is 
difficult to split the work and obtain low load imbalance 
between the CPU and GPU regardless of the method used 
to distribute the work.

Regarding our performance models, we find that indi-
vidually modeling the response time of New-Super-EGO 
and LBJoin is accurate in some cases, and inaccurate in 
others (Fig. 8). We constrained the model to only require a 
single time measurement of New-Super-EGO and LBJoin on 
each dataset. This restriction means that if the response time 
increases nonlinearly as a function of the search volume, 
then the model is unable to adequately capture the measured 
response time. This led to the models overestimating the 
response time in some cases, yielding a poor distribution 
of work between the CPU and GPU for the static splitting 
strategies (HEGJoin-SQ and HEGJoin-SC).

Our static partitioning strategies that distribute the work 
based on the performance models considered: (i) all query 
points have an identical amount of work to compute (HEG-
Join-SQ), and (ii) query points have a varying amount of 
work to compute based on the size of each query point’s 
candidate set (HEGJoin-SC). A good distribution of work 

to the CPU and GPU requires that the models are able to 
adequately capture performance, and we demonstrated this 
by showing that the partitioning strategy based on (ii) out-
performs (i) above. Despite HEGJoin-SC being able to cap-
ture the number of candidate points that need to be refined 
per query point, we find that the model was unable to capture 
several performance characteristics that degraded the perfor-
mance of this static partitioning strategy in some cases. We 
outline some factors that contribute to poor model accuracy 
as follows. 

1.	 The size of the GPU batches must be substantially larger 
to saturate GPU resources; therefore, this increases the 
chances that the CPU will be starved of work toward the 
end of the computation, leading to non-negligible load 
imbalance.

2.	 The GPU component of HEGJoin reduces the main 
memory bandwidth of the CPU component; therefore, if 
� and data properties lead to a memory-bound execution, 
the GPU’s memory operations will reduce the CPU’s 
available memory bandwidth, which will lead to load 
imbalance.

3.	 Depending on data properties and � , the GPU may 
be underutilized due to many factors, including those 
related to the SIMT architecture. Typically, this occurs 
when we observe that the response time is roughly “flat” 
with increasing � (Fig. 10e and f). Since the GPU may 
be underutilized, increasing � has little impact on per-
formance, which causes the model to overestimate the 
response time. An example of this is shown in Fig. 9d 
by comparing the execution time of HEGJoin-SC and 
model curves.

4.	 Algorithms for the CPU typically achieve the best per-
formance (lowest response time) if they are work-effi-
cient. However, the GPU’s architecture can break this 
work-efficient assumption, as algorithms designed for 
the GPU may be work-inefficient but achieve a lower 
response time than a work-efficient algorithm that per-
forms the same task [39]. Consequently, modeling the 
performance of a GPU-only algorithm is challenging, 
and the addition of a concurrently executing CPU algo-
rithm exacerbates this problem.

In summary, this paper yields insight into the self-join 
as executed on heterogeneous architectures, which neces-
sitates a comprehensive examination of the problem of 
work distribution between architectures. The insights 
described above outline several challenges related to split-
ting the work using static and dynamic partitioning strate-
gies. Despite these aforementioned challenges, HEGJoin is 
more robust to dataset characteristics and search distance, as 
we find that the algorithm generally outperforms the CPU/
GPU-only counterparts. We show the speedup of HEGJoin 
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over New-Super-EGO and LBJoin across all our datasets 
(Table 2) and evaluated on two different platforms in Fig. 13. 
We thus observe that HEGJoin-Dyn is, independently from 
the platform we used, on average more efficient than LBJoin 
and New-Super-EGO.

6 � Conclusion

In this paper, we propose HEGJoin, which is to the best of 
our knowledge the first data-parallel heterogeneous and con-
current CPU-GPU algorithm that computes distance similar-
ity searches and that leverages LBJoin and Super-EGO, two 
state-of-the-art algorithms to compute distance similarity 
searches on the GPU and CPU, respectively. While the com-
putation of distance similarity searches is memory-bound 
in lower dimensions, it becomes compute-bound in higher 
dimensions. In both of these situations, the GPU is very 
suitable at computing distance similarity searches, due to 
its higher computational throughput and memory bandwidth 
compared to the CPU.

We propose three work partitioning strategies to assign 
work to the CPU and GPU; particularly, we propose a 
dynamic work partitioning strategy that assigns work to the 
CPU and GPU on-demand through a shared deque, in addi-
tion to two static partitioning strategies based on the num-
ber of query points, and based on the number of candidate 

points that will need to be refined. The dynamic partition-
ing strategy simply does not consider the overall workload 
of HEGJoin and is efficient because of the shared deque 
and its on-demand work assignment to the CPU and GPU. 
In contrast, the static partitioning strategy HEGJoin-SQ is 
workload-oblivious, while HEGJoin-SC is workload-aware.

We described several insights into the work partitioning 
problem between the CPU and GPU based on the static par-
titioning strategies. To summarize, the use of two different 
architectures, combined with two different algorithms makes 
modeling HEGJoin a challenging task. This led to dynamic 
partitioning being generally more efficient than the two 
static partitioning strategies. Despite the challenges of stati-
cally partitioning the work, we find that HEGJoin with the 
dynamic deque is more robust to data distributions and the 
search radius of the self-join than the CPU-only and GPU-
only algorithms. Consequently, HEGJoin outperforms the 
CPU/GPU-only algorithms in most experimental scenarios.

The dynamic partitioning strategy achieved the best 
performance. Future work should examine different ways 
to enhance the dynamic partitioning method described 
in this paper, while still being able to accommodate the 
GPU’s requirement of processing large batches of work to 
achieve high search throughput. By narrowing our focus on 
this task, we may be able to further reduce the load imbal-
ance observed, particularly on higher-dimensional datasets. 
Another research direction is to use nonparametric models 
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Fig. 13   Average speedup of HEGJoin-Dyn over a New-Super-EGO 
and b LBJoin on Platform  1, and over c New-Super-EGO and d 
LBJoin on Platform  2, across all datasets (Table  2). The horizontal 

dashed line corresponds to the average speedup u and is as follows: a 
u = 1.50 , b u = 1.59 , c u = 2.99 , and d u = 1.23 . The horizontal solid 
line corresponds to a speedup of u = 1.0
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to statically split the work between the CPU and GPU, which 
may be able to better capture the complexity of the algo-
rithm. Another possibility is to use an adaptive model that 
could systematically select the best work partitioning strat-
egy based on data characteristics.
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