
Vol.:(0123456789)1 3

Data Science and Engineering
https://doi.org/10.1007/s41019-020-00145-x

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work
Partitioning Strategies

Benoit Gallet1  · Michael Gowanlock1

Received: 23 June 2020 / Revised: 5 September 2020 / Accepted: 5 October 2020
© The Author(s) 2020

Abstract
Given two datasets (or tables) A and B and a search distance � , the distance similarity join, denoted as A⋉

�
B , finds the pairs

of points ( pa , pb ), where pa ∈ A and pb ∈ B , and such that the distance between pa and pb is ≤ � . If A = B , then the similarity
join is equivalent to a similarity self-join, denoted as A ⋈

�
A . We propose in this paper Heterogeneous Epsilon Grid Joins

(HEGJoin), a heterogeneous CPU-GPU distance similarity join algorithm. Efficiently partitioning the work between the
CPU and the GPU is a challenge. Indeed, the work partitioning strategy needs to consider the different characteristics and
computational throughput of the processors (CPU and GPU), as well as the data-dependent nature of the similarity join that
accounts in the overall execution time (e.g., the number of queries, their distribution, the dimensionality, etc.). In addition
to HEGJoin, we design in this paper a dynamic and two static work partitioning strategies. We also propose a performance
model for each static partitioning strategy to perform the distribution of the work between the processors. We evaluate the
performance of all three partitioning methods by considering the execution time and the load imbalance between the CPU and
GPU as performance metrics. HEGJoin achieves a speedup of up to 5.46× ( 3.97× ) over the GPU-only (CPU-only) algorithms
on our first test platform and up to 1.97× ( 12.07× ) on our second test platform over the GPU-only (CPU-only) algorithms.

Keywords  HEGJoin · Work partitioning · Heterogeneous CPU-GPU computing · Range query · Similarity join · Super-
EGO

1  Introduction

Consider two input datasets A and B, and a distance thresh-
old � . A distance similarity search finds the pairs of points
( pa , pb ), pa ∈ A and pb ∈ B , such that the distance between
these two points is ≤ � . While any distance function can be
used, in the literature, the Euclidean distance is typically
employed [1–6]. These similarity searches are typically
computed as a semi-join operation ( A⋉

�
B ), where A is a

set or table of query points and B a set or table of entries in
an index. The particular case where A = B is a self-join (and
thus A ⋈

�
A ). For simplicity, we examine in this paper the

self-join problem. However, we do not explore optimizations

exclusive to the self-join. Thus, our optimizations apply to
the semi-join case as well. For an input dataset, D, the brute-
force self-join solution has a time complexity of O(|D|2) .
This complexity decreases when a data indexing method is
used to prune the search space. Hence, using an index and
the search-and-refine strategy, for each query point in D, the
search of the index generates a set of candidate points that
are likely to be within � of the query point, while the refine
step computes the distance between a query point and its
candidate points to produce the final result set.

The indexing methods used for the search-and-refine
strategy are often designed for either low [2–4, 6] or high
dimensionality [5, 7, 8]. Due to the curse of dimensional-
ity [3, 9], when dimensionality increases, index searches
become more exhaustive, and the complexity of the algo-
rithm gradually degrades into a brute-force search. Hence,
indexes suited for low-dimensional data are likely not to be
as efficient when used on higher-dimensional data (and vice
versa). The curse of dimensionality is thus among the rea-
sons why we only focus here on the low-dimensionality case,
rather than any dimensionality: we elect to create an efficient

 *	 Benoit Gallet
	 benoit.gallet@nau.edu

	 Michael Gowanlock
	 michael.gowanlock@nau.edu

1	 School of Informatics, Computing and Cyber Systems,
Northern Arizona University, 1295 S Knoles Dr, Flagstaff,
AZ 86011, USA

http://orcid.org/0000-0001-9716-1502
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00145-x&domain=pdf

	 B. Gallet, M. Gowanlock

1 3

algorithm for the low-dimensional case, rather than a less
efficient algorithm that addresses all dimensionalities. Fur-
thermore, while low-dimensional searches are often mem-
ory-bound, high-dimensional searches are usually compute-
bound, as the cost of a distance calculation increases with
dimensionality. In this paper, we focus on low-dimensional
searches. Hence, HEGJoin may saturate memory bandwidth,
thus potentially negatively impacting performance and paral-
lel scalability of the algorithm, as compared to when fewer
processors contend for memory bandwidth.

Graphics processing units (GPUs) have been increasingly
used for general computational problems and particularly
for improving similarity join performance [4, 5], and with
specific data indexing methods that are suited to the GPU’s
particular single instruction multiple threads (SIMT) archi-
tecture [10–14]. The proliferation of GPUs is particularly
explained by their increased computational throughput and
higher memory bandwidth compared to CPUs. However,
despite these attractive features, their use in combination
with the CPU to perform some part of the computation to
further improve database query throughput, such as the
distance similarity join, remains underexplored. Thus, we
propose in this paper HEGJoin, a heterogeneous CPU-GPU
distance similarity search algorithm. Hence, in addition to
the CPU performing GPU-supporting tasks (launching ker-
nels, transferring data, etc.), we explicitly use the CPU to
compute a fraction of the total number of query points.

As discussed above, the literature concerning heteroge-
neous CPU-GPU database applications is relatively scarce.
Thus, we propose to leverage both the CPU and GPU and
design an efficient algorithm to compute distance similarity
searches. There are two major CPU-GPU similarity search
algorithm designs, described as follows:

•	 Task parallelism Assign the CPU and GPU particular
tasks to compute, such as searching on the CPU and then
refining on the GPU [15].

•	 Data parallelism Split the data to compute and perform
both the search and refine steps on each architecture
independently, using different algorithms suited to the
strengths of each architecture [16].

In the literature, heterogeneous CPU-GPU similarity
search and related range query algorithms focus on a task-
parallel approach [15, 17]. The task-parallel approaches
model the problem as a two [15] or three stage pipeline
[17], where the CPU is assigned one task, such as searching
an index, and the GPU is assigned the task of refining the
candidate points [15]. Consequently, as with any pipeline,
the throughput is dependent on the slowest stage. There-
fore, the drawback of the task-parallel approach is that it can
leave resources (CPU or GPU) underutilized. In this paper,
we focus on the data-parallel approach, which allows us to

exploit all available computational resources in the system
to maximize query throughput. Since we concurrently use
the CPU and GPU, we then need to efficiently partition the
work among our processors, i.e., assign to each processor
a number of queries to compute so the algorithm achieves
good load balancing and thus good performance. To the best
of our knowledge, HEGJoin is the first data-parallel hetero-
geneous and concurrent CPU-GPU distance similarity join
algorithm.

As our solution is designed for data-parallelism, our
work partitioning strategies partition queries from the input
dataset. Because HEGJoin is a heterogeneous CPU-GPU
algorithm, this is particularly challenging as we need to
efficiently distribute the work to accommodate each proces-
sor’s architectural characteristics. The data-parallel work
partitioning can be achieved by different methods: dynami-
cally [16] where the work is assigned to the processors on-
demand, or statically [18, 19], where each processor has a
fixed amount of work to compute. Statically partitioning the
work is challenging, as we need to determine the amount of
work to be assigned to the CPU and GPU such that it mini-
mizes load imbalance between the processors. The workload
has data-dependent performance characteristics that depend
on the number of points, their dimensionality, and their dis-
tribution (e.g., underdense vs. overdense regions). Consider
partitioning the data using a dynamic approach. In this case,
partitioning involves having the pieces of work assigned to
the CPU or the GPU, where there is a trade-off between
small work units assigned to each processor to achieve good
load balancing, and large work units so that the processors
reach peak throughput. On the other hand, static partitioning
requires accurately estimating the total workload, which is
particularly challenging given the data-dependent nature of
the work. In contrast, on other problems that have determin-
istic workloads, the workload can be accurately estimated,
and static work partitioning is straightforward [20].

To enable static partitioning, we propose two perfor-
mance models that quantify the workload based on different
metrics that enable the two static partitioning strategies to
assign work to the CPU and GPU. Additionally, we propose
a dynamic partitioning strategy that is oblivious to the work-
load. We compare these partitioning strategies to assess their
relative strengths and weaknesses, to understand how the
characteristics of the workload may affect the performance
of HEGJoin, and to ultimately be able to select the partition-
ing strategy that yields the best performance.

Our algorithm leverages two previously proposed inde-
pendent works that were shown to be highly efficient: the
GPU algorithm (LBJoin) by [6] and the CPU algorithm
(Super-EGO) by [3]. However, although we mention above
that HEGJoin employs a data-parallel approach, as we lev-
erage two different algorithms (LBJoin and Super-EGO)
and a work queue, our algorithm also has task-parallel

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

characteristics. While the output of LBJoin and Super-EGO
is identical, the algorithm executed by the CPU is inherently
different from the algorithm executed by the GPU. There-
fore, HEGJoin uses a mixed parallelism model (a combina-
tion of data- and task-parallelism). Figure 1 illustrates how
LBJoin and Super-EGO work together through the use of a
single shared work queue.

By combining the LBJoin and Super-EGO algorithms
and using our work partitioning methods, we achieve bet-
ter performance on most experimental scenarios than CPU-
only or GPU-only approaches. Note that, since Super-EGO
and LBJoin respective indexing methods are more efficient
in lower dimensions, and as most of the related literature
works rarely focus on both low and high dimensionality,
we choose to focus on low-dimensional distance similarity
joins. Hence, this paper makes the following contributions:

1.	 We combine state-of-the-art algorithms for the CPU and
GPU to propose a new algorithm, HEGJoin, and which
is, to the best of our knowledge, the first data-parallel
heterogeneous and concurrent CPU-GPU distance simi-
larity join algorithm.

2.	 We propose an efficient shared double-ended work queue
(deque) to assign query points either to the CPU or to
the GPU. Furthermore, we exploit the GPU’s high com-
putational throughput by assigning it query points with
the highest workload (located at the beginning of the
deque), while we assign the query points with the small-
est workload to the CPU.

3.	 We develop three different workload partitioning strate-
gies. The dynamic work partitioning strategy uses the
shared deque to assign work to either the CPU or GPU.
In this case, there is no fixed boundary on the work that
can be assigned to the CPU or the GPU, as it is assigned
to processors on-demand. Furthermore, we advance two

static work partitioning methods: based on the number
of query points and based on the total number of can-
didate points that need to be refined per query point.
As with both static strategies, the CPU and GPU have
a fixed number of queries to compute, if the GPU com-
pletes its work before the CPU, it must wait for the CPU
to complete its work (and vice versa).

4.	 We optimize Super-EGO to further improve the perfor-
mance of HEGJoin. We denote this optimized version
of Super-EGO as New-Super-EGO.

5.	 We evaluate the performance of HEGJoin using seven
real-world and ten exponentially distributed synthetic
datasets and using two platforms. We achieve speedups
up to 5.46× and 3.97× over the GPU-only and CPU-only
algorithms on the first test platform and speedups up to
1.97× and 12.07× on the second test platform. Further-
more, we achieve an average load imbalance ratio as
low as 0.14 when using the dynamic work partitioning
strategy on the first platform.

The paper is organized as follows. We begin in Sect. 2 by
surveying the literature and presenting an overview of GPU
architecture. We then present in Sect. 3 the leveraged algo-
rithms, and we describe HEGJoin and its main features in
Sect. 4. We evaluate the performance of HEGJoin and our
partitioning methods in Sect. 5, and we finally conclude this
paper in Sect. 6.

2 � Background

2.1 � Problem Statement

Let D be a dataset in d dimensions. Each point in D is
denoted as qi , where i = 1, ..., |D| . We denote the jth

Fig. 1   Representation of how we combine Super-EGO and LBJoin by
using a single work queue to form HEGJoin. When using the static
partitioning strategy, the CPU and the GPU would access the work
queue only once (at the beginning of the algorithm to retrieve their

assigned queries). When using the dynamic partitioning scheme, the
CPU and the GPU would iteratively query the work queue for queries
to compute until it is empty

	 B. Gallet, M. Gowanlock

1 3

coordinate of qi ∈ D as qi(j) , where j = 1, ..., d . Thus, given
a distance threshold � , we define the distance similarity
search of a query point q as finding all points in D that are
within this distance � to q. We also define a candidate point
c ∈ D as a point whose distance to q is evaluated. Similarly
to related work, we use the Euclidean distance. Therefore,
the similarity join finds pairs of points ( q ∈ D , c ∈ D ), such
that dist(q, c) ≤ � , where dist(q, c) =

�∑d

j=1
(q(j) − c(j))2  .

All processing occurs in-memory. While we consider the
case where the result set size may exceed the GPU’s global
memory capacity, we do not consider the case where the
result set size may exceed the platform’s main memory
capacity.

2.2 � GPU Architecture

We present material related to GPU architecture and use
CUDA terminology throughout the paper. Modern GPUs
are equipped with a few thousand cores. The global mem-
ory bandwidth of the GPU is over an order of magnitude
higher than the main memory bandwidth of the CPU (up
to 1555 GB/s for the Tesla A100 [21] GPU). However, the
GPU’s global memory has limited capacity, and the potential
for parallelism is dependent on control flow, as threads are
executed in groups of 32 (called warps) in lock step. Also,
different workloads assigned to threads within the same warp
induce idle periods, where some threads are idle while others
are computing. The PCI interconnect between the CPU and
the GPU is a bottleneck (PCIe-v3 has 32 GiB/s bidirectional
bandwidth). For more information on the CUDA program-
ming model and the GPU architecture, we refer the reader
to general references on the topic [22, 23].

2.3 � Related Work

In this section, we outline relevant work regarding the dis-
tance similarity join and work partitioning methods between
heterogeneous architectures.

2.3.1 � Data Indexing

Since the similarity join is frequently used as a building
block within other algorithms, the literature regarding the
optimization of the similarity join is extensive. However,
the vast majority of the existing literature aims at improving
performance using either the CPU or the GPU, and rarely
both. Hence, the literature regarding heterogeneous CPU-
GPU similarity join optimizations remains relatively scarce.
The search-and-refine strategy (Sect. 1) largely relies on the
use of data indexing methods that we describe as follows.

Indexing data structures are used to prune the search
space of an indexed input dataset to reduce the number of

candidates that may be within � of each query point. Given
a query point q and a distance threshold � , indexes find
the candidate points that are likely to be within a distance
� of q. Also, the majority of the indexes are designed for
a specific use, whether they are for low- or high-dimen-
sional data, for the CPU, for the GPU, or both architec-
tures. We identify different indexing methods, including
those designed for the CPU [2, 3, 24–29], the GPU [10,
12, 30], or both architectures [15–17]. As our algorithm
focuses on the low-dimensionality distance similarity
search, we focus on presenting indexing methods that are
designed for lower dimensions. Since indexes are an essen-
tial component of distance similarity searches, identifying
the best index for each architecture is critical to achieve
good performance, especially when using two different
architectures. Furthermore, although our heterogeneous
algorithm leverages two previously proposed works [3, 6]
that both use a grid index for the CPU and the GPU, we
discuss in the following sections several other indexing
methods based on trees.

CPU Indexing In the literature, the majority of indexes
designed for the CPU used to index multi-dimensional data
are based on trees. The following trees have been designed
for range queries and can, therefore, be used for distance
similarity searches. The kD-Tree [24] is a binary tree that
indexes k-dimensional data by subsequently splitting the
search space in two, following an alternation of the k dimen-
sions (in two dimensions for example, split following the
x-axis, then the y-axis, then the x-axis, etc.). Hence, each
node stores the coordinates of its search space and splits
it between its two child nodes. The Quad Tree [31] is very
similar to the kD-Tree, as it consists of a tree whose nodes
have four children, and as the search space is subsequently
divided into four subspaces (instead of two for the kD-Tree).
The nodes of the R-Tree [27] consist of bounding boxes to
store multi-dimensional objects, which are then stored in the
leaf nodes of the tree. In addition to these tree indexes, grids
such as the Epsilon Grid Order (EGO) [2, 3] have also been
designed for distance similarity joins. We discuss this EGO
index that we leverage in Sect. 3.2.

GPU Indexing Similar to CPU indexes, index-trees have
been optimized to address the GPU’s SIMT architecture.
[12] optimized the R-Tree on the GPU by replacing the
recursive accesses inherent to traversing the tree that are
not suited to the GPU. They replaced these accesses by
sequential accesses, particularly by allowing the search of
the tree to jump from a node to its next sibling. [10] improve
the efficiency of the B-Tree by using nodes the size of the
GPU’s cache access size and by avoiding recursive calls
during the tree traversal as well. Furthermore, they assign
multiple queries to a warp, with all the threads of the same
warp that cooperate to compute one query at a time, thus
reducing intra-warp thread divergence. We leverage the GPU

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

grid index proposed by [30] and that is designed for distance
similarity joins, which we present in Sect. 3.1.1.

CPU-GPU Indexing [15] propose an R-Tree designed for
range queries that uses task parallelism. The CPU searches
the internal nodes of the tree and, when reaching the leaf
nodes, sends this partial result to the GPU. The GPU then
traverses these leaf nodes, which are stored as a contiguous
array in GPU’s main memory so the memory accesses are
likely coalesced, and refines the candidate objects. In con-
trast, [16] elects to use two indexes for data parallelism to
compute k NN searches. The CPU uses a kD-Tree [24], while
the GPU uses a grid [30]. Hence, both indexes are suited to
their respective architecture.

2.3.2 � Workload Partitioning

As described above, efficiently partitioning the work of par-
allel algorithms is critical, whether it is based on the tasks
to execute (task-parallelism), or the data to compute (data-
parallelism). Because the solution we propose in this paper
requires data-parallelism, we describe in this section contri-
butions in the literature that propose partitioning schemes
for data-parallel algorithms as well.

Efficient work partitioning is usually difficult to achieve
since several parameters need to be considered: typically
the processors’ relative performance (e.g., computational
throughput or memory bandwidth), and if the algorithm’s
workload can be easily determined (usually the case for non
data-dependent workloads). On problems exposing a data-
dependent workload, such as the distance similarity join or
sparse matrix multiplications [32] for example, determining
the workload is more challenging than for problems with-
out data-dependent workloads (e.g., regular matrix–matrix
multiplications [20]).

Dynamic partitioning solutions [16] present advantages
to keeping the processors busy (as they are assigned work
until none is available) and do not require knowing the rela-
tive performance of the processors beforehand, making it
agnostic to platform hardware characteristics. Furthermore,
while dynamic work partitioning does not require knowledge
about the workload to be functional, it may still be beneficial
to determine an overall workload in order to assign work to
the most suitable processor.

On the other hand, static partitioning methods [18, 19],
if not arbitrary (i.e., a static partitioning of work not based
on information related to the processors or the algorithm),
requires having accurate knowledge about the relative
performance of the processors as well as the workload to
achieve good load balancing between the processors. Fur-
thermore, most static partitioning methods are based on
models [18, 19], which are made for a specific algorithm and
platform. Hence, their solution may be inefficient when used
for a different algorithm (which would require a new model)

or on a different platform (which would require adapting the
model for this new platform).

Michael [16] proposes a dynamic partitioning scheme to
compute k NN searches. Using a work queue, they continu-
ously assign query points to the CPU and the GPU until
all the work has been computed. As the overall workload
of the algorithm is determined beforehand, they are able to
assign more query points and with the highest workloads
to the GPU and the rest to the CPU. The load balancing of
the computation is thus managed by the work queue and the
dynamic work assignment to the different processors.

Dominik and O’Boyle [18] advance a general static parti-
tioning scheme of applications. Their solution relies on dif-
ferent metrics such as the number of computing operations
and their precision, the number of memory operations, the
presence of loops, etc., extracted from the code before the
computation. Hence, they determine an overall workload for
the algorithm and, if the computation is considered to be
efficient if executed on both the CPU and GPU, then they
estimate a work partitioning using the input data size, and
a model they previously developed using the same applica-
tion and for several fixed static partitioning fractions. [19]
propose a model to statically assign the work of a fast Fou-
rier transform (FFT) to the CPU and the GPU. Their solu-
tion creates subproblems of the FFT and, following their
model, assign these subproblems to the most suitable proces-
sor. This model is based on parameters such as previously
recorded performance, CPU-GPU data transfer rate, memory
management on the GPU, matrix transposition performance,
and several other factors.

The dynamic work partitioning strategy we propose in
this paper, while similar to the one proposed by [16], should
be more efficient as the way we determine our workload is
more accurate than their solution. Our static work partition-
ing methods, similarly to other static partitionings [18, 19],
also propose a performance model (for each of our static par-
titioning strategy). However, we outline the importance of
determining the overall workload to efficiently partition, by
proposing an intuitive solution having rather little knowledge
about the workload, and a second method with an accurate
knowledge of the workload. The load imbalance between
the CPU and GPU would show such importance. For com-
parative purposes, we expect that our solution with accurate
workload knowledge will yield better load balancing than
the solution with less knowledge of the workload.

3 � Leveraged Work

In this section, we present the leveraged works used to
design HEGJoin. We use LBJoin [6] for the GPU and Super-
EGO [3] for the CPU, which are two state-of-the-art algo-
rithms for their respective platforms, which are publicly

	 B. Gallet, M. Gowanlock

1 3

available. For greater detail, we encourage the reader to refer
to the original papers of Super-EGO [3] and LBJoin [6].
Furthermore, we acknowledge that a CPU distance similar-
ity join algorithm has been proposed in the literature by [33]
that outperforms Super-EGO at high dimensions. However,
their algorithm has comparable performance to Super-EGO
in low dimensionality. Therefore, we use Super-EGO and
not [33] to create HEGJoin, as it is better suited to our low-
dimensional case.

3.1 � GPU Algorithm: LBJoin

The GPU component of HEGJoin is based on the GPU ker-
nel proposed by [6]. This kernel also uses the grid index
and the batching scheme by [30]. This work is the best dis-
tance similarity join algorithm for low dimensions that uses
the GPU. (There are similar GPU algorithms but they are
designed for range queries, see Sect. 2.)

3.1.1 � Grid Indexing

The grid index presented by [30] allows the query points to
only search for candidate points within its 3d adjacent cells
(and the query points’ own cell), where d is the data dimen-
sionality. This grid is stored in several arrays in the GPU’s
global memory: (i) the first array represents only the non-
empty cells to minimize memory usage, (ii) the second array
stores the cells’ linear id and a minimum and maximum indi-
ces of the points, and (iii) the third array corresponds to the
position of the points in the dataset and is pointed to by the
second array. Candidate points are retrieved by searching
the index in global memory, which yields a set of candidates
points in the dataset, D. Furthermore, the threads within
the same warp access adjacent cells in the same lock-step
fashion, thus avoiding thread divergence. Also, note that we
modify their work and now construct the index directly on
the GPU, which is much faster than constructing it on the
CPU as in the original work.

3.1.2 � Batching Scheme

Computing the �-neighborhood of many query points may
yield a very large result set and exceed the GPU’s global
memory capacity. Therefore, in [30], the total execution is
split into multiple batches, such that the result set does not
exceed global memory capacity.

The number of batches that are executed, nb , are defined
by an estimate of the total result set size, ne , and a buffer
of size ns , which is stored on the GPU. The authors use a
lightweight kernel to compute ne , based on a sample of D.

Thus, they compute nb = ne∕ns.1 The buffer size, ns , can be
selected such that the GPU’s global memory capacity is
not exceeded. The number of query points, nGPU

p
 , processed

per batch (a fraction of |D|) are defined by the number of
batches as follows: nGPU

p
= |D|∕nb . Hence, a smaller number

of batches will yield a larger number of queries processed
per batch.

The total result set is simply the union of the results
from each batch. Let R denote the total result set, where
R =

⋃nb
l=1

rl , where rl is the result set of a batch, and where
l = 1, 2,… , nb.

The batches are executed in three CUDA streams, allow-
ing the overlap of GPU computation and CPU-GPU com-
munication, and other host-side tasks (e.g., memory copies
into and out of buffers), which is beneficial for performance.

3.1.3 � Sort by Workload and Work Queue

The sorting strategy proposed by [6] sorts the query points
by non-increasing workload. The workload of a query point
is determined by the sum of candidate points in its own cell
and its 3d adjacent cells in the grid index. Hence, the grid
index is used to retrieve the adjacent cells and to find the
number of points in each of them. This results in a list of
query points sorted from most to least workload, which is
then used in the work queue to assign work to the GPU’s
threads. The consequence of sorting by workload and of
using this work queue is that threads within the same warp
will compute query points with a similar workload, thereby
reducing intra-warp load imbalance. This reduction in load
imbalance, compared to their GPU reference implementation
[6], therefore reduces the overall number of periods where
some threads of the warp are idle and some are computing.
This yields an overall better response time than when not
sorting by workload. This queue is stored on the GPU as
an array, and a variable is used to indicate the head of the
queue. In this paper, we store this queue on the CPU’s main
memory to be able to share the work between the CPU and
the GPU components of HEGJoin. Furthermore, the sum of
the individual workloads of each query point corresponds to
the total workload. Since this sorting by workload strategy
uses the grid index to compute the workload, it allows for
estimating the workload for any input dimensionality and
data distribution.

3.1.4 � GPU Kernel

The GPU kernel [6] makes use of a grid index, the batching
scheme, as well as the sorting by workload strategy and the

1  In this section, for clarity, and without the loss of generality, we
describe the batching scheme assuming all values divide evenly.

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

work queue presented above. Moreover, we configure the
kernel [6] to use a single GPU thread to process each query
point (|D| threads in total). Thus, each thread first retrieves a
query point from the work queue using an atomic operation.
Then, using the grid index, the threads search for their non-
empty neighboring cells corresponding to their query point
and iterate over the found cells. Finally, for each candidate
point within these cells, the algorithm computes the distance
to the query point and if this distance is ≤ � , then the key/
value pair made of the query point’s id and the candidate
point’s id is added to the result buffer r of the batch.

3.2 � CPU Algorithm: Super‑EGO

Similarly to our GPU component, the CPU component of
HEGJoin is based on the efficient distance similarity join
algorithm, Super-EGO, proposed by [3]. We detail its main
features as follows.

3.2.1 � Dimension Reordering

The principle of this technique is to first compute a his-
togram of the average distance between the points of the
dataset and for each dimension. A dimension with a high
average distance between the points means that points are
more spread across the search space, and therefore fewer
points will join. The goal is to quickly increase the cumula-
tive distance between two points so it reaches � with fewer
distance calculations, allowing the algorithm to short-circuit
the distance calculation and continue computing the next
point.

3.2.2 � EGO Sort

This sorting strategy sorts the points based on their coor-
dinates in each dimension, divided by � . This puts spatially
close points close to each other in memory and serves as
an index to find candidate points when joining two sets of
points. This sort was originally introduced by [2].

3.2.3 � Join Method

The Super-EGO algorithm takes a set of query points and
computes each point’s result set as follows. First, in main
memory, Super-EGO recursively creates new partitions,
until these partitions reach a given size. Next, the join is
made by comparing the set of query points to this set of
generated partitions of the input dataset, where the partitions
that are recursively generated are sets of points spatially co-
located to the set of query points. Then, since the points are
sorted based on their coordinates and the dimensions have
been reordered, two partitions are compared only if their
first point is within � from each other. If they are not, then

subsequent points will not join either, and the join of the two
partitions is aborted.

3.2.4 � Parallel Algorithm

Super-EGO also adds parallelism to the original EGO algo-
rithm, using pthreads and a producer–consumer scheme to
balance the workload between threads. When a new partition
is recursively created, if the size of the queue is less than
the number of threads (i.e., some threads have no work), the
newly created partitions are added to the work queue to be
shared among the threads. This ensures that no threads are
left without work to compute.

4 � Heterogeneous CPU‑GPU Algorithm:
HEGJoin

In this section, we present the major components of our het-
erogeneous CPU-GPU algorithm, HEGJoin, the different
techniques we propose to partition the workload between
the CPU and the GPU, as well as improvements made to the
work we leverage.

4.1 � Shared Work Queue

As mentioned in Sect. 3.1, we leverage the work queue
stored on the GPU that was proposed by [6], which effi-
ciently balances the workload between GPU threads. How-
ever, to use the work queue for the CPU and the GPU com-
ponents of HEGJoin, we must relocate it to the host/CPU
to use it with our CPU algorithm component. Because the
GPU has a higher computational throughput than the CPU,
we assign the query points with the most work to the GPU,
and those with the least work to the CPU. Similarly to the
shared work queue proposed by [16] for the CPU-GPU k NN
algorithm, the query points need to be sorted based on their
workload, as detailed in Sect. 3.1.3. However, while query
points’ workload in [16] is characterized by the number of
points within each query point’s cell, we define here the
workload as the number of candidate points within all adja-
cent cells. Our sorting strategy is more representative of
the workload than in [16], as it yields the exact number of
candidates that must be filtered for each query point.

Using this queue with the CPU and the GPU requires
modifying the original work queue [6] to be a double-ended
queue (deque), as well as defining a deque index for each
architecture. Since the query points are sorted by work-
load, we set the GPU’s deque index to the beginning of the
deque (greatest workload) and to the end of the deque for
the CPU’s index (smallest workload). Therefore, the GPU’s
workload is configured to decrease while the CPU’s work-
load increases, as their respective index progresses in the

	 B. Gallet, M. Gowanlock

1 3

deque. Also, note that while np for the CPU ( nCPU
p

 ) is fixed,
np for the GPU ( nGPU

p
 ) varies based on the dataset character-

istics and on � (Sect. 3.1.2).
As described in Sect. 3, HEGJoin uses two different sorts:

sorting by workload (Sect. 3.1.3) and Super-EGO ’s EGO-
sort (Sect. 3.2.2). However, as these two strategies sort fol-
lowing different criteria, it is not possible to first sort by
workload then to EGO-sort (and vice versa), as the first sort
would be overwritten by the second sort. We thus create a
mapping between the EGO-sorted dataset and our shared
work queue, as represented in Fig. 3.

4.2 � Workload Partitioning

As previously described, this paper proposes three differ-
ent methods to partition the work between the CPU and the
GPU, using the shared work queue presented in Sect. 4.1.
Proposing these three methods allows us to extensively
explore work partitioning characteristics, as well as dem-
onstrate the significance of an efficient work partitioning
method. Our three partitioning methods use the shared deque
presented in Sect. 4.1, as in all three cases the work still
needs to be partitioned among threads. Thus, we describe
these partitioning strategies as follows.

4.2.1 � Dynamic Work Partitioning Strategy

Our dynamic work partitioning strategy assigns work to
the CPU and GPU on-demand until the queue is empty.

Constantly querying the queue for a fraction of work pro-
vides good load balancing, as the processors are likely to
complete their last batch of queries at roughly the same
time. The CPU and GPU are both assigned a batch size large
enough to accommodate their relative performance (par-
ticularly for the GPU, to achieve good occupancy), as well
as to reduce the number of atomic accesses to the queue.
However, the batch size for the CPu and GPu is also not too
large, so they are not assigned too many query points as it
might leave a processor without work to compute while the
other one is computing a large batch. Figure 2 illustrates
how the dynamic partitioning strategy works. We describe
the procedure used to assign the query points to the proces-
sors as follows:

1.	 We set the GPU’s deque index to 1 and the CPU’s deque
index to |D|.

2.	 The program terminates if the GPU’s and CPU’s indices
are at the same position in the deque.

3.	 To assign query points to a GPU stream, we create and
assign a new batch of queries to this GPU stream and
increase GPU’s deque index.

4.	 To assign query points to CPU thread, we create and
assign a new batch of queries to this CPU thread and
decrease CPU’s deque index.

4.2.2 � Static Partitioning Strategy Based on Query Points

This static work partitioning method splits the number of
query points between the processors, using a static par-
titioning fraction pq , where 0 ≤ pq ≤ 1 . Hence, from pq
and a number of query points (|D|), we can determine the
number of query points nGPU

q
 to assign to the GPU and,

by extension, to the CPU. This partitioning fraction pq is
determined based on the estimation of the workload west ,
as a function of the number of query points and � . We
consider for this partitioning strategy the equal workload
assumption that we describe as follows.

Equal Workload Assumption In this model, we assume
that we do not know the workload of each query point.
Thus, we consider that each query point has the same

Fig. 2   Representation of our deque as an array. The numbers qi are
the query points id, the triangles are the starting position of each
index, and the arrows above it indicate the indices progression in the
deque

Fig. 3   Illustration of an input dataset D, the shared deque sorted by
workload Q, the input dataset EGO-sorted E and the mapping M
between Q and E. The numbers in D, Q, and E correspond to query

point ids, while the numbers in M correspond to their position in E.
The numbers below the arrays are the indices of the elements

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

workload. For example, if data are largely unstructured,
similarly to a uniform distribution, then all query points
would have roughly the same amount of work to compute.
Then, based on the query throughput of the CPU and GPU,
we assign each architecture a fraction of the total number
of queries.

Figure 4 illustrates the static partitioning strategy based
on query points. Using the equal workload assumption,
this example shows the case where the model assigns the
same number of query points to the CPU and GPU. In this
example, we have an input dataset D sorted by workload
(Sect. 3.1.3) made of 100 query points ( |D| = 100 ) and
indexed by i. In this example, our model determines an over-
all workload wtotal

est
= 600 , which, following the equal work-

load assumption, corresponds to each point having an esti-
mated workload west = wtotal

est
∕|D| = 6 . We consider in this

example that the model determines that the CPU and GPU
have the same throughput and should therefore be assigned
the same workload ( wCPU

est
= wGPU

est
 ), and thus the same num-

ber of query points. Depending on the dataset’s character-
istics (such as its distribution), this estimated workload
might differ from the actual workload to compute, which
may have an impact on the overall performance of HEGJoin
when using such a static partitioning strategy, compared to
the other partitioning strategies we propose in this paper.

Using the equal workload assumption, we propose a
model to determine the static partitioning fraction pq for
HEGJoin (where 0 ≤ pq ≤ 1 ). For a specific dataset in d
dimensions, we consider a reference search distance �r , its
search volume in d dimensions v(�r) =

�
d∕2

Γ(
d

2
+1)

× �r
d , and the

corresponding execution time of LBJoin ( TGPU
�r

 ) and Super-
EGO ( TCPU

�r
 ) when computing the distance similarity join on

d with the reference search distance �r . Hence, for a given
search distance �s for which we want to determine the work

partitioning fraction pq , we predict the execution time of
LBJoin and Super-EGO by scaling their execution time TGPU

�r

and TCPU
�r

 by the ratio of the search volume v(�s) over the
reference search volume v(�r) . The ratio v(�s)∕v(�r) corre-
sponds to the estimated workload increase when the search
distance increases as well. Thus, we predict the execution
time of the GPU-only algorithm (LBJoin) TGPU as follows:

Similarly, we predict the execution time of the CPU-only
algorithm (Super-EGO) TCPU as follows:

We then compute the GPU query throughput (the number of
query points the GPU can process per second) as
fGPU
q

= |D|∕TGPU
(�s, �r, T

GPU
�r

) , as well as the CPU query
throughput f CPU

q
= |D|∕TCPU

(�s, �r, T
CPU
�r

) . In addition, we
consider the upper bound query throughput as
fq = fGPU

q
+ f CPU

q
 , and which corresponds to the sum of the

GPU and CPU query throughput. Using this upper bound
query throughput fq , we can predict the execution time
THEGJOIN of HEGJoin when using any of our static partition-
ing strategies. We compute this predicted execution time as
follows:

In addition to predicting the execution time of HEGJoin, we
use the upper bound query throughput fq to determine the
static partitioning fraction pq as the ratio of fGPU

q
 over fq .

Consequently, we compute the static partitioning fraction
as follows:

Finally, we use pq to determine the number of query points
to assign to the GPU as nGPU

q
= |D| × pq . By extension, we

determine the number of query points to assign to the CPU
as nCPU

q
= |D| − nGPU

q
.

4.2.3 � Static Partitioning Strategy Based on Candidate
Points

Static partitioning based on candidate points considers the
total number of candidate points to refine, as well as the
number of candidate points of the individual query points.
Hence, while the previous static partitioning strategy
assumes an equal workload between the query points, we
acknowledge here that the query points are likely to each

(1)TGPU
(�s, �r, T

GPU

�r
) = TGPU

�r
×

v(�s)

v(�r)

(2)TCPU
(�s, �r, T

CPU

�r
) = TCPU

�r
×

v(�s)

v(�r)

(3)THEGJOIN
= |D|∕fq

(4)pq = fGPU
q

∕fq

Fig. 4   Representation of the static partitioning strategy based on the
query points, where D is the dataset sorted by workload, i refers to
the indices of the query points in D, and W

est
 the workload of the

points using the equal workload assumption and that is determined
by our model (and where wtotal

est
 is the estimated workload of HEG-

Join). As we use the equal workload assumption, each query point is
therefore assigned the same workload. Furthermore, we consider in
this example that the model considers the CPU and GPU to have the
same throughput, and thus assigns the same estimated workload to
both processors ( wCPU

est
= wGPU

est
 ), i.e., the same number of query points

	 B. Gallet, M. Gowanlock

1 3

have a different workload. We thus propose the unequal
workload assumption as follows.

Unequal Workload Assumption We consider for this
model that each query point can have a workload different
from the other query points. Hence, if a dataset has dense
regions and sparse regions, the workload that is assigned to
the query points is an accurate reflection of their workload
in comparison to the equal workload assumption.

Figure 5 illustrates the static partitioning strategy based
on the number of candidate points to refine. In this exam-
ple, the model considers that the CPU and GPU have the
same throughput and should, therefore, be assigned the
same number of candidate points to refine. Hence, we
have an input dataset D with 100 query points ( |D| = 100 )
that are sorted by their respective workload w, and a total
number of candidate points to refine wtotal

= 626 . This
model estimates a number of candidate points to refine
wtotal
est

= 626 , which is split equally between the CPU and
the GPU (as the model considers they have the same
throughput in this example). Thus, the GPU is assigned
an estimated total number of candidate points to refine
wGPU
est

= 313 , and wCPU
est

= 313 for the CPU. And, since this
model considers the unequal workload assumption, the
GPU’s workload is the same as its estimated workload
( wGPU

= wGPU
est

 ). The same outcome applies to the CPU
( wCPU

= wCPU
est

 ). Furthermore, while this example workload
corresponds to 11 query points for the GPU and 89 query
points for the CPU (determined by the cumulative work-
load of these query points), the respective total number

of candidate points to refine of the GPU and the CPU is
similar ( wGPU

≈ wCPU ). Given that the CPU and GPU are
considered to have the same throughput in this example,
this strategy should yield a relatively low load imbalance
between the CPU and GPU.

This static partitioning strategy uses Equations 1 and 2 to
predict the execution time of LBJoin and Super-EGO for a
specific dataset and a given search distance �s . Hence, we
use the total number of candidate points to refine w, as deter-
mined when sorting the query points by their workload, in
addition to the predicted execution time TGPU

(�s, �r, T
GPU
�r

)
to compute the GPU candidate point throughput (the number
of candidate points the GPU can refine per second)
fGPU
c

= w∕TGPU
(�s, �r, T

GPU
�r

) . Similarly to the GPU, we com-
pute the number of candidate points throughput refined by
the CPU f CPU

c
= w∕TCPU

(�s, �r, T
CPU
�r

) . In comparison with
the static partitioning based on the query points (Sect. 4.2.2),
we compute here the upper bound throughput of the number
of candidate points refined fc = fGPU

c
+ f CPU

c
 , which corre-

sponds to the sum of the throughput of the number of can-
didate points refined by the CPU and GPU. We then use this
upper bound candidate refinement throughput to determine
the static partitioning fraction pc (where 0 ≤ pc ≤ 1 ), and
which is computed as follows:

We then use this static partitioning fraction pc to deter-
mine the number of candidate points to assign to the GPU,
nGPU
c

= w × pc . Similarly, we determine the number of can-
didate points to assign the CPU, nCPU

c
= w − nGPU

c
 . Further-

more, as we consider the unequal workload assumption we
described above, we need to find the number of query points
to assign to the GPU, nGPU

q
 , and for which their cumulative

workload is the closest to the GPU’s assigned workload nGPU
c

(by extension, we also find nCPU

q
= |D| − nGPU

q
).

While the GPU and CPU do not use the same indexing
method, and thus do not yield the same number of candi-
date points to refine, our experimental evaluation (Sect. 5)
will show that the number of candidate points to refine, w,
yielded by the grid indexing schemes in LBJoin (Sect. 3.1)
and Super-EGO (Sect. 3.2) are roughly consistent such that
we assume w is equal for both indexing schemes.

4.2.4 � Summary of Work Partitioning Strategies

In this section, we summarize the key points of the work
partitioning strategies we presented in Sects. 4.2.1, 4.2.2
and 4.2.3 above.

•	 Dynamic Partitioning Strategy This work partitioning
strategy uses the shared deque proposed in Sect. 4.1 to

(5)pc = fGPU
c

∕fc

Fig. 5   Representation of the static partitioning strategy based on the
candidate points, where D is the dataset, i the indices of the query
points in D, the workload of the points w as used to sort them by their
workload (and where wTotal is the total number of candidate points to
refine), and w

est
 the workload of the query points determined by the

model (and where wtotal

est
 is the total estimated workload of HEGJoin).

While we consider for this example that the model estimates a work-
load that is equal to the workload of HEGJoin ( wtotal

est
= wTotal ), there

might be scenarios in which wtotal

est
 and wTotal are different. We consider

in this example that the model estimates the CPU and GPU to have
the same throughput and thus assign the same number of estimated
candidate points to refine to the CPU and to the GPU ( wCPU

est
= wGPU

est
 ).

Furthermore, as in this example the estimated workload is the same
as the actual workload of HEGJoin ( wtotal

est
= wTotal ), both processors

are assigned the same amount of work to compute ( wGPU
= wCPU ),

i.e., the same number of candidate points to refine

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

assign query points to the CPU and GPU on-demand,
until the deque is empty. The main objective of this par-
titioning method is to have the CPU and GPU finish-
ing their last batch of query points roughly at the same
time, particularly by frequently querying the deque for
a new batch to compute. We denote HEGJoin using this
dynamic partitioning strategy as HEGJoin-Dyn.

•	 Static Partitioning Strategy Based on Query Points The
static partitioning strategy based on query points that
we described in Sect. 4.2.2 estimates the workload of
HEGJoin to assign a number of query points to the CPU
and GPU. Given a specific dataset, a search distance �r
and the execution time of LBJoin and Super-EGO, this
strategy estimates the computation time of HEGJoin by
scaling the execution time of LBJoin and Super-EGO
using �r and the search distance used to compute the
distance similarity join. From this estimated computa-
tion time and the execution time of the GPU-only and
CPU-only algorithms, we determine the static partition-
ing fraction pq (where 0 ≤ pq ≤ 1 ), and then the number
of query points to assign to the GPU and CPU, assum-
ing that all the query points have an equal workload. We
denote HEGJoin using this static partitioning strategy
based on query points as HEGJoin-SQ.

•	 Static Partitioning Strategy Based on Candidate Points
This static partitioning strategy based on candidate
points that we introduced in Sect. 4.2.3 divides the total
number of candidate points to refine between the CPU
and GPU. Similarly to the partitioning method based on
query points, we predict the execution time of LBJoin
and Super-EGO the same way as we do for the static
partitioning strategy based on query points. However, we
use this predicted execution time to determine the static
partitioning fraction pc and splits the total number of
candidate points to assign to the CPU and GPU. Hence,
we determine the number of candidate points to assign
to the GPU and CPU and then find the number of query
points whose cumulative workload is the closest to the
workload assigned to the GPU. Similarly, we determine
the number of query points to assign to the CPU. We
denote HEGJoin using this static partitioning strategy
based on candidate points as HEGJoin-SC.

Table 1 summarizes the properties of HEGJoin-Dyn,
HEGJoin-SQ, and HEGJoin-SC. HEGJoin-Dyn and
HEGJoin-SC have mutually exclusive properties, whereas
HEGJoin-SQ overlaps the properties of HEGJoin-Dyn and
HEGJoin-SC. By examining these three work partitioning
strategies, we cover a large range of properties, thus enabling
us to make a comprehensive examination of work distribu-
tion in HEGJoin.

4.3 � Batching Scheme: Complying
with Non‑Increasing Workload

Because the batching scheme proposed by [30] and pre-
sented in Sect. 3.1.2 was not designed for non-increasing
workloads, we had to adapt it to fit our sort by workload
strategy (Sect. 3.1.3) and its non-increasing workload.
Indeed, as the batch estimator creates batches with a fixed
number of query points, and because the query points are
sorted by workload, this batching scheme creates successive
batches with a non-increasing workload. Hence, as the exe-
cution proceeds, the batches become smaller, take less time
to compute, and the overhead of launching many kernels
may become substantial, particularly when the computation
could have been executed with fewer batches.

We modify the batching scheme (Sect. 3.1.2) to accom-
modate the sort by workload strategy, and that is represented
in Fig. 6. While still estimating a fraction of the points, the
rest of the points get a number of neighbors inferred from
the maximum value of the two closest estimated points (to
overestimate and avoid buffer overflow during computation).
Adding the estimated and the inferred number of neighbors
yields an estimated result set size ne . We then create the
batches so they have a consistent result set size rl close to the
buffer size ns . As the number of estimated neighbors should
decrease (as their workload decreases), the number of query
points per batch increases.

When using the dynamic partitioning (Sect. 4.2.1), we
set a minimum number of batches to 2 × nf  , where nf = 3 is
the number of CUDA streams used. Therefore, the GPU can

Table 1   Summary of the different properties of HEGJoin-Dyn, HEG-
Join-SQ, and HEGJoin-SC 

HEGJoin-Dyn HEGJoin-SQ HEGJoin-SC

Workload-oblivious ✓ ✓

Workload-aware ✓

On-demand ✓

Planned ✓ ✓

Architecture-oblivious ✓

Architecture-aware ✓ ✓

Fig. 6   Representation of the new batch estimator. The bold numbers
are the estimated number of neighbors of those points, while the other
numbers are inferred, based on the maximum result between the two
closest estimated points shown in bold

	 B. Gallet, M. Gowanlock

1 3

only initially be assigned up to half of the queries in the work
queue. This ensures that the GPU is not initially assigned too
many queries, which would otherwise starve the CPU of
work to compute. When using a static partitioning strategy
(Sects. 4.2.2 and 4.2.3), then we set the minimum number
of batches for the GPU nf = 3 , so each CUDA stream has at
least a batch to compute. We do not create more batches for
the CPU, as it already has its own reserved fraction of the
work, determined by one of the static partitioning strategies.

4.4 � GPU Component: HEGJoin‑GPU

The GPU component of our heterogeneous algorithm, which
we denote as HEGJoin-GPU and that we can divide into two
parts (the host and the kernel), remains mostly unchanged
from the algorithm proposed by [6] and presented in Sect. 3.

Regarding the host side of our GPU component, we
modify how the kernels are instantiated to use the shared
work deque presented in Sect. 4.1. Therefore, as the original
algorithm was looping over all the batches (as given by the
batch estimator, presented in Sect. 3), the algorithm now
loops while the shared deque returns a batch to compute
(Sect. 4.1).

In the kernel, since the work queue has been relocated to
the CPU, a batch corresponds to a range of queries in the
deque whose interval is determined when taking a new batch
from the queue, and can be viewed as a “local queue” on the
GPU. Therefore, the threads in the kernel update a counter
that is local to the batch to determine which query point to
compute, still following the non-increasing workload that
yields a good load balancing between threads in the same
warp.

4.5 � CPU Component: HEGJoin‑CPU

The CPU component of HEGJoin, which we denote as HEG-
Join-CPU, is based on the Super-EGO algorithm proposed
by [3] and presented in Sect. 3.2. We make several modifi-
cations to Super-EGO to incorporate the shared deque we
use, and we also optimize Super-EGO to improve its per-
formance. We denote this improved version of Super-EGO
as New-Super-EGO.

As described in Sect. 3.2, Super-EGO uses a queue and a
producer–consumer system for multithreading. We remove
this system and replace it with our shared deque. Because
the threads are continuously taking work from the shared
deque until it is empty, the producer–consumer system origi-
nally used becomes unnecessary, as the deque informs New-
Super-EGO when it is empty.

The original Super-EGO algorithm recursively creates
sub-partitions of contiguous points on the input datasets
until their size is suited for joining. As one of the partitions

is now taken from our deque, which is sorted by workload, it
no longer corresponds to a contiguous partition of the input
dataset. Thus, we loop over the query points of the batch
given by the deque to join it with the other points in the
partition. This optimization requires the use of the mapping
presented in Sect. 4.1 and illustrated in Fig. 3.

Super-EGO uses qsort from the C standard library to
EGO-sort, and we replace it by the more efficient and paral-
lel boost::sort::sample_sort algorithm, a stable sort from
the Boost C++ library. This allows New-Super-EGO to start
its computation earlier than Super-EGO would, as it is faster
than qsort. We use as many threads to sort as we use to
compute the join.

Finally, in contrast to the original Super-EGO algorithm,
New-Super-EGO is now capable to compute and to store
data using 64-bit floats instead of only 32-bit floats.

5 � Experimental Evaluation

In this section, we present the experimental evaluation we
conducted to measure the performance of HEGJoin against
the work it leverages (LBJoin and Super-EGO), as well as
the efficiency of the different work partitioning strategies we
propose in this paper.

5.1 � Selectivity

We report the selectivity as defined by [3] of our experi-
ments as a function of � . We define the selectivity
S = (|R| − |D|)∕|D| , where R is the result set and D is the
input dataset. The selectivity thus corresponds to the average
number of neighbors found per query point, excluding the
query points from finding themselves.

5.2 � Datasets

In this section, we present the real-world and synthetic data-
sets we use to evaluate the performance of HEGJoin and our
partitioning strategies. We detail the real-world datasets that
we select as follows:

•	 SW- [34], composed of 1.86M or 5.16M points in two
dimensions representing the latitude and longitude of the
objects, and adding the total number of electrons as the
third dimension.

•	 SDSS [35], composed of a sample of 15.23M galaxies in
two dimensions.

•	 Gaia [36], in which we select the position of 50M objects
from the Gaia catalog.

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

•	 OSM [37], which is a collection of GPS point data
from OpenStreetMap, and in which we also select 50M
objects.

In addition to the real-world datasets, we conduct experi-
ments on exponentially distributed synthetic datasets made
of 2M and 10M points spanning two to eight dimensions.
(We detail later the datasets used to evaluate the static par-
titioning in particular.) These datasets are named using the
dimensions and number of points; for example, Expo3D2M
is a three-dimensional dataset containing 2M points. We
elect to use an exponential distribution (with � = 40 ) as this
distribution contains over-dense and under-dense regions,
similarly to the real-world datasets we select. Finally, expo-
nential distributions yield a high load imbalance between
the points and thus should illustrate the performance of
HEGJoin when there is a load imbalance between the CPU
and GPU. Furthermore, we do not use uniformly distributed
datasets, as this type of dataset would not yield load imbal-
ance, as all the query points would have roughly the same
workload. We summarize these real-world and exponentially
distributed synthetic datasets in Table 2.

5.3 � Methodology

We conduct all our experiments on the two following
platforms:

•	 Platform 1 2 × Intel Xeon E5-2683-v4 (with 2 × 16
cores), 256 GiB of main memory, and an Nvidia Titan X
with 12 GiB of global memory.

•	 Platform 2 2 × Intel Xeon E5-2620-v4 (with 2 × 8 cores),
128 GiB of main memory, and an Nvidia Quadro GP100
with 16 GiB of global memory.

While we systematically present the results of the experi-
ments using Platform 1, we only show the results of the
experiments using Platform 2 in Fig. 13. The code executed
by the CPU is written in C++, while the GPU code is writ-
ten using CUDA. We use the GNU compiler and use the O3
optimization flag for all experiments.

We summarize the different implementations we evalu-
ate as follows. For clarity, we differentiate between similar
algorithm components since they may use slightly differ-
ent experimental configurations. For example, we make
the distinction between the CPU component of HEGJoin,
HEGJoin-CPU, and the original Super-EGO algorithm.

•	 LBJoin: the GPU algorithm proposed by [6], using 3
GPU streams (managed by 3 CPU threads), 256 threads
per block, ns = 5 × 107 key/value pairs, where the dataset
is stored as 64-bit floats, and nGPU

p
 is given by the batch

estimator presented in Sect. 4.3. This configuration is
used on both platforms.

•	 Super-EGO: the CPU algorithm developed by [3], using
32 (16) CPU threads on Platform 1 (Platform 2), and we
use 32-bit floats to store the dataset.

•	 New-Super-EGO: our optimized version of Super-EGO
as presented in Sect. 4.5 that uses the sorting by work-
load strategy, using 32 (16) CPU threads on Platform 1
(Platform 2), and where the dataset is stored as 64-bit
floats.

•	 HEGJoin-GPU: the GPU component of HEGJoin, using
the same configuration as LBJoin and one of the work
partitioning strategies we propose (Sect. 4.2).

•	 HEGJoin-CPU: the CPU component of HEGJoin, using
the same configuration as New-Super-EGO and one of
the work partitioning strategies (with nCPU

p
= 1, 024 when

using the dynamic partitioning and the shared deque).
•	 HEGJoin: the heterogeneous algorithm that combines

HEGJoin-CPU and HEGJoin-GPU. HEGJoin-Dyn

Table 2   Summary of the
datasets used to conduct our
experiments. |D| denotes
the number of points, d the
dimensionality, and S the
selectivity range for the values
of � we use

The Expo- datasets are exponentially distributed synthetic datasets (using � = 40 ), while the others are
real-world datasets

Dataset |D| d S Dataset |D| d S

Expo2D2M 2 M 2 397–9.39 K Expo2D10M 10 M 2 80–1.99 K
Expo3D2M 2 M 3 64–6.70 K Expo3D10M 10 M 3 9–1.06 K
Expo4D2M 2 M 4 23–9.26 K Expo4D10M 10 M 4 3–1.63 K
Expo6D2M 2 M 6 0–2.68 K Expo6D10M 10 M 6 0–499
Expo8D2M 2 M 8 0–157 Expo8D10M 10 M 8 0–167
SW2DA 1.86 M 2 295–5.82 K SW2DB 5.16 M 2 91–2.03 K
SW3DA 1.86 M 3 239–13.20 K SW3DB 5.16 M 3 33–2.13 K
Gaia 50 M 2 19–455 OSM 50 M 2 67–571
SDSS 15.23 M 2

2
1–31

	 B. Gallet, M. Gowanlock

1 3

denotes HEGJoin when using the dynamic partitioning
strategy, HEGJoin-SQ denotes HEGJoin when using the
static partitioning strategy based on query points, while
HEGJoin-SC denotes HEGJoin when using the static par-
titioning strategy based on candidate points.

HEGJoin-CPU and HEGJoin-GPU, as part of HEGJoin,
each compute a fraction of the work. LBJoin, Super-EGO,
New-Super-EGO and HEGJoin are standalone algorithms,
and thus compute all the work. All response times are
averaged over three time trials and include the end-to-end
computation time, i.e., the time to construct the grid index
on the GPU, sort by workload, reorder the dimensions and
to EGO-sort, and the time to join. Note that some of these
time components may overlap (e.g., EGO-sort and GPU
computation may occur concurrently).

5.4 � Results

In this section, we present the results of our experimental
evaluation. We provide a roadmap for the organization of
our results as follows:

•	 In Sect. 5.4.1, we present the performance of New-
Super-EGO when compared to Super-EGO.

•	 In Sect. 5.4.2, we compare the search space pruning
efficiency of the indexes used by New-Super-EGO and
LBJoin.

•	 In Sect. 5.4.3, we outline the accuracy of the models
used by HEGJoin-SQ and HEGJoin-SC that we pro-
posed in Sects. 4.2.2 and 4.2.3.

•	 After the baseline performance is demonstrated in
Sects. 5.4.1–5.4.3, in Sect. 5.4.4 we show the perfor-
mance of HEGJoin-Dyn, HEGJoin-SQ and HEGJoin-
SC, as compared to the leveraged algorithms, New-
Super-EGO and LBJoin.

•	 In Sect. 5.4.5, we evaluate the efficiency of our shared
work queue by measuring the load imbalance between
the CPU and GPU.

•	 In Sect. 5.4.6, we assess the overhead incurred by the
data transfers between the CPU and GPU when using
HEGJoin.

5.4.1 � Performance of New‑Super‑EGO

In this section, we evaluate the performance of New-Super-
EGO, the optimized version of Super-EGO. The major opti-
mizations include a different sorting algorithm, using the
sorting by workload strategy and work queue (Sect. 4.5). The
experiments in this section were conducted on a selection of
datasets from Table 2. The results we show in this section
are from using Platform 1.

We evaluate the performance of EGO-sort using the par-
allel sample_sort algorithm from the C++ Boost library
over the qsort algorithm from the C standard library. sam-
ple_sort is used by New-Super-EGO (and thus by HEG-
Join), while qsort is used by Super-EGO. Figure 7a plots the
speedup of sample_sort over qsort on our synthetic data-
sets. We observe an average speedup of 7.18× and 10.55×
on the 2M and 10M points datasets, respectively. Note that
we elect to use the sample_sort as the EGO-sort needs to
be stable.

Figure 7b plots the speedup of New-Super-EGO over
Super-EGO on the SW- real-world datasets. New-Super-
EGO achieves an average speedup of 1.63 × over Super-
EGO. While New-Super-EGO stores data as 64-bit floats,
Super-EGO only uses 32-bit floats and thus has a perfor-
mance advantage compared to New-Super-EGO. The over-
all speedup is explained by using sample_sort over qsort,
and the sorting by workload strategy with the work queue.
Therefore, New-Super-EGO largely benefits from balancing
the workload between its threads and from using the work
queue.

Fig. 7   a Speedup to EGO-Sort
our exponentially distrib-
uted synthetic datasets using
sample_sort from the Boost
library over qsort from the C
standard library. S = 0 – 9.39K
and S = 0 – 1.99K on the 2M
and 10M points datasets,
respectively. b Speedup of New-
Super-EGO over Super-EGO
on the SW- real-world datasets.
Results from Platform 1

2 3 4 6 8
Dimensionality

6

8

10

12

Sp
ee
du
p

Parallel Boost sample sort 10M
Parallel Boost sample sort 2M

(a) EGO-Sort Speedup

10−1 100
ε

0

1

2

3

4

Sp
ee
du
p

SW2DA
SW2DB

SW3DA
SW3DB

Avg.

(b) New-Super-EGO Speedup

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

5.4.2 � Candidate Point Pruning Efficiency of LBJoin
and New‑Super‑EGO

In this section, we explore the pruning efficiency of the grid
when used by LBJoin and when used by New-Super-EGO.
As we mentioned in Sect. 4.2.3, because LBJoin and New-
Super-EGO use two different grid indexes, the pruning of
the search space may yield a different number of candidate
points to refine. Hence, we compare in Table 3 the number of
candidate points refined by LBJoin and New-Super-EGO, as
well as the ratio of the number of candidate points refined by
LBJoin over the number of candidate points refined by New-
Super-EGO on a selection of datasets. We observe that in
lower dimensions, the difference in the number of candidate
points refined by LBJoin and New-Super-EGO is relatively
low, as the ratio is around 1. However, as dimensionality
increases, we observe that this ratio tends to decrease, indi-
cating that New-Super-EGO becomes less efficient at prun-
ing the search space than LBJoin. The results we show in
this section are from Platform 1.

5.4.3 � Model Validation for HEGJoin‑SQ and HEGJoin‑SC

In this section, we evaluate the accuracy of the models we
propose for the static partitioning strategies based on query

points (Sect. 4.2.2) and based on the number of candidate
points to refine (Sect. 4.2.3). The results we show in this
section are from Platform 1.

Figure 8 plots the modeled execution time of LBJoin as
TGPU and the modeled execution time of New-Super-EGO
as TCPU on a selection of datasets. We observe that in 2D
(Fig. 8a and b), the model determines an execution time sim-
ilar to the execution time of LBJoin and New-Super-EGO.
In 4D (Fig. 8c), while the modeled time for LBJoin is accu-
rate, the modeled time of New-Super-EGO is overestimated
when 𝜖 > 2.4 × 10−3 . On the Expo6D10M dataset (Fig. 8d),
we observe that the modeled time of both LBJoin and New-
Super-EGO are overestimated when 𝜖 > 4.8 × 10−3 . Thus,
we observe that the model may sometimes not accurately
predict the response time of HEGJoin and, therefore, may
yield a poor distribution of the work to the CPU and GPU.

This poor distribution is particularly impactful when the
execution time of a processor is overestimated, while the
execution time of the other processor is underestimated. As
the model yields fq = fc , the workload of the static parti-
tioning based on the query points is likely to be higher than
the workload of the static partitioning based on the num-
ber of candidate points to refine. Indeed, because the query
points are sorted by their workload in a non-increasing order
(Sect. 3.1.3), the number of query points determined by the

Table 3   Comparison of the
number of candidate points
refined by LBJoin vs. New-
Super-EGO, and ratio of the
number of candidate points
refined by LBJoin over the
number of candidate points
refined by New-Super-EGO
on a selection of our datasets
(Table 2)

Results from Platform 1

Dataset � S LBJoin New-Super-EGO Ratio

SW2DA 1.5 5.82 K 28,441,701,752 27,786,778,388 1.02
SDSS 0.002 31 65,531,735,119 66,154,801,616 0.99
SW3DA 3.0 13.20 K 90,349,946,258 87,855,196,567 1.03
Expo2D2M 0.002 9.39 K 51,789,286,408 50,121,273,123 1.03
Expo2D10M 0.0004 1.99 K 56,439,981,246 54,645,837,741 1.03
Expo4D2M 0.01 9.26 K 113,929,159,776 177,787,029,288 0.64
Expo4D10M 0.004 1.63 K 217,420,698,818 216,050,585,244 1.01
Expo8D2M 0.015 157 77,827,299,052 108,430,322,625 0.72
Expo8D10M 0.012 167 207,650,110,734 374,000,045,202 0.56

0.3 0.6 0.9 1.2 1.5
ε

0

10

20

30

T
im
e
(s
)

LBJoin
Model TGPU

New-Super-EGO
Model TCPU

(a) SW2DA

0.6 1.2 1.8 2.4 3.0
ε (×10−4)

0

20

40

60

T
im
e
(s
)

LBJoin
Model TGPU

New-Super-EGO
Model TCPU

(b) Gaia

0.8 1.6 2.4 3.2 4.0
ε (×10−3)

0

100

200

300

T
im
e
(s
)

LBJoin
Model TGPU

New-Super-EGO
Model TCPU

(c) Expo4D10M

1.6 3.2 4.8 6.4 8.0
ε (×10−3)

0

500

1000

1500

T
im
e
(s
)

LBJoin
Model TGPU

New-Super-EGO
Model TCPU

(d) Expo6D10M

Fig. 8   Comparison of the modeled execution times TGPU and TCPU vs. their corresponding reference execution times LBJoin and New-Super-
EGO on a selection of datasets: (a) SW2DA, (b) Gaia, (c) Expo4D10M and (d) Expo6D10M. The results from Platform 1

	 B. Gallet, M. Gowanlock

1 3

static partitioning fraction fq will very likely have a cumula-
tive workload higher than the workload yielded by the static
partitioning of the candidate points determined by the static
partitioning fraction fc.

Figure 9 plots the modeled execution time of HEGJoin
as determined by the static partitioning model (Sect. 4.2.2)
vs. the response time of HEGJoin-SQ and HEGJoin-SC
on a selection of datasets. We observe on the 2D datasets
(Fig. 9a and b) that the modeled execution time for HEG-
Join is slightly underestimated compared to the execution
time of HEGJoin-SQ and HEGJoin-SQ. As we mentioned
before, low-dimensional searches are memory-bound, a
bottleneck that the model is unable to capture and thus to
include in its modeled time. Indeed, as we consider the upper
bound throughput as the sum of LBJoin and New-Super-
EGO respective throughput, we assume that concurrently
using the CPU and the GPU scales perfectly, without said
bottlenecks. Nevertheless, the modeled execution time of
HEGJoin is overall similar to the execution time of HEG-
Join-SQ and HEGJoin-SC. On the Expo4D10M, and despite
its overestimation of the modeled time of New-Super-EGO
(Fig. 8c), the modeled execution time of HEGJoin is very
similar to the execution time of HEGJoin-SQ and HEGJoin-
SC. Finally, the overestimation of both the modeled time of
LBJoin and New-Super-EGO on the Expo6D10M dataset
(Fig. 8d) is also reflected in Fig. 9d, as the modeled execu-
tion time of HEGJoin is also overestimated compared to the
execution time of HEGJoin-SQ and HEGJoin-SC. However,
we observe that the modeled execution time of HEGJoin
is very similar to the modeled execution time of LBJoin
(Fig. 8d), which means that the model considers, for this
dataset, that HEGJoin is mostly relying on the GPU to com-
pute the majority of the work. On the Expo6D10M dataset,
we would thus expect HEGJoin-SQ and HEGJoin-SC to have
a rather high load imbalance, as the CPU is likely to have
little work to compute, and therefore to have to wait for the
GPU to finish its computation. We confirm this expectation
in Sect. 5.4.5 when evaluating the load imbalance of the
partitioning strategies we propose.

5.4.4 � Performance of the Work Partitioning Strategies

In this section, we evaluate the performance of our three
work partitioning strategies, i.e., HEGJoin-Dyn, HEGJoin-
SQ, and HEGJoin-SC. We compare their performance to
LBJoin and New-Super-EGO. While we show results for a
selection of our synthetic datasets (Fig. 10) that span mul-
tiple dimensions and size, we show the results on all our
real-world datasets (Fig. 11). The results we show in this
section are from Platform 1.

Performance on Exponential Datasets Fig. 10 plots the
response time of HEGJoin-Dyn, HEGJoin-SQ, HEGJoin-
SC, LBJoin, and New-Super-EGO on the (a) Expo2D2M,
(b) Expo2D10M, (c) Expo4D10M, (d) Expo6D10M, (e)
Expo8D2M, and (f) Expo8D10M datasets. We select these
datasets as they span multiple dimensions and differ-
ent sizes. We observe on most datasets (Fig. 10a–d) that
HEGJoin-Dyn and HEGJoin-SC overall yield similar perfor-
mance, while HEGJoin-SQ is rather inefficient as it does not
substantially improve the execution time of either LBJoin
or New-Super-EGO. Thus, using the number of candidate
points in the model that is used to statically partition the
work yields a better work distribution than not considering
the candidate points.

In Fig. 10, we observe on our highest dimensional data-
sets, and more particularly for the intermediate values of
� (Expo8D2M where � = 0.9 × 10−2 , and Expo8D10M
where � = 0.72 × 10−2 ), that HEGJoin-Dyn response time
does not monotonically increase with � as it is the case in
lower dimensions. This occurs because few batches are
executed on the GPU, and which take a significant amount
of time. This prevents the CPU from taking work from the
work queue, thereby increasing the load imbalance between
the CPU and GPU. At higher values of � , there is less
load imbalance between the CPU and GPU; therefore, the
response time decreases. On the other hand, we find that
on these datasets (Expo8D2M and Expo8D10M), HEGJoin-
SQ is often the most efficient partitioning strategy, while
the performance of HEGJoin-SC is between LBJoin and

0.3 0.6 0.9 1.2 1.5
ε

0

10

20

30

T
im
e
(s
)

Model HEGJoin
HEGJoin-SQ
HEGJoin-SC

(a) SW2DA

0.6 1.2 1.8 2.4 3.0
ε (×10−4)

0

20

40

60

T
im
e
(s
)

Model HEGJoin
HEGJoin-SQ
HEGJoin-SC

(b) Gaia

0.8 1.6 2.4 3.2 4.0
ε (×10−3)

0

25

50

75

100

T
im
e
(s
)

Model HEGJoin
HEGJoin-SQ
HEGJoin-Sc

(c) Expo4D10M

1.6 3.2 4.8 6.4 8.0
ε (×10−3)

0

200

400

600

T
im
e
(s
)

Model HEGJoin
HEGJoin-SQ
HEGJoin-SC

(d) Expo6D10M

Fig. 9   Comparison of the modeled execution time of HEGJoin as determined by the static partitioning model vs. the response time of HEGJoin-
SQ and HEGJoin-SC on a selection of datasets: a SW2DA, b Gaia, c Expo4D10M and d Expo6D10M. Results from Platform 1

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

0.4 0.8 1.2 1.6 2.0
ε (×10−3)

0

20

40

60

T
im
e
(s
)

LBJoin New-Super-EGO HEGJoin-Dyn HEGJoin-SQ HEGJoin-SC

0.8 1.6 2.4 3.2 4.0
ε (×10−4)

0

10

20

30

40

T
im
e
(s
)

0.8 1.6 2.4 3.2 4.0
ε (×10−3)

0

20

40

60

80

100

T
im
e
(s
)

1.6 3.2 4.8 6.4 8.0
ε (×10−3)

0

100

200

300

T
im
e
(s
)

0.3 0.6 0.9 1.2 1.5
ε (×10−2)

0

20

40

60

T
im
e
(s
)

0.24 0.48 0.72 0.96 1.20
ε (×10−2)

0

200

400

600

T
im
e
(s
)

(a) Expo2D2M (b) Expo2D10M (c) Expo4D10M

(d) Expo6D10M (e) Expo8D2M (f) Expo8D10M

Fig. 10   Response time of HEGJoin-Dyn, HEGJoin-SQ, HEGJoin-
SC, LBJoin, and New-Super-EGO on a Expo2D2M, b Expo2D10M,
c Expo4D10M, d Expo6D10M, e Expo8D2M, and f Expo8D10M. S

is in the range a 397–9.39 K, b 80–1.99 K, c 3–1.63 K, d 0–499, e
0–157, and f 0–167. Results from Platform 1

0.3 0.6 0.9 1.2 1.5
ε

0

10

20

30

T
im
e
(s
)

LBJoin New-Super-EGO HEGJoin-Dyn HEGJoin-SQ HEGJoin-SC

0.6 1.2 1.8 2.4 3.0
ε

0

25

50

75

100

125

T
im
e
(s
)

0.2 0.4 0.6 0.8 1.0
ε

0

10

20

30

40

T
im
e
(s
)

0.4 0.8 1.2 1.6 2.0
ε (×10−3)

0

10

20

30

40

T
im
e
(s
)

0.6 1.2 1.8 2.4 3.0
ε (×10−4)

0

10

20

30

40

T
im
e
(s
)

0.6 1.2 1.8 2.4 3.0
ε (×10−5)

0

20

40

60

T
im
e
(s
)

(a) SW2DA (b) SW3DA (c) SW3DB

(d) SDSS (e) Gaia (f) OSM

Fig. 11   Response time of HEGJoin-Dyn, HEGJoin-SQ, HEGJoin-SC, LBJoin, and New-Super-EGO on (a) SW2DA, b SW3DA, c SW3DB, d
SDSS, e Gaia, and f OSM. S is in the range a 295–5.82 K, b 239–13.2 K, c 33–2.13 K, d 1–31, e 19–455, and f 67–571. Results from Platform 1

	 B. Gallet, M. Gowanlock

1 3

New-Super-EGO. If we examine LBJoin and New-Super-
EGO execution times for the median value of � , we observe
that the CPU is more efficient than the GPU. Hence, the
model assumes that the CPU is consistently more efficient
for other values of � and will therefore assign more work
to the CPU. However, the LBJoin execution time does not
increase as much as the model predicted, while New-Super-
EGO execution time increased more than what the model
predicted. Hence, the model will assign a higher fraction of
the work to the CPU than it is capable of processing within
the execution time estimated by the model. On these par-
ticular datasets (Expo8D2M and Expo8D10M), since the
execution time of LBJoin is overestimated and the execu-
tion time of New-Super-EGO is underestimated, the static
partitioning based on query points ends up being the most
efficient partitioning as � increases, since most of the work
is assigned to the GPU.

As described in Section 1, we choose to focus on low
dimensionality. Observe here that the execution time of
New-Super-EGO significantly degrades with dimensionality
(Fig. 10d–f). Therefore, if we were to employ New-Super-
EGO at higher dimensions than that explored in this work,
the algorithm would have a negligible impact on perfor-
mance of HEGJoin. In higher dimensions, it would be more
worthwhile to consider the use of a different CPU algorithm
to replace New-Super-EGO, such as that proposed by [33].

Performance on Real-World Datasets Fig. 11 plots the
response time of HEGJoin-Dyn, HEGJoin-SQ, HEGJoin-
SC, LBJoin, and New-Super-EGO on the (a) SW2DA, (b)
SW3DA, (c) SW3DB, (d) SDSS, (e) Gaia, and (f) OSM
datasets. We observe on these real-world datasets a similar
behavior as on the Expo2D2M and Expo2D10M datasets
(Fig. 10a and b). Thus, we observe that the static parti-
tioning based on the number of candidate points to refine,
HEGJoin-SC, achieves similar performance as the dynamic

partitioning HEGJoin-Dyn. Furthermore, we can see that
both of these partitioning strategies achieve similar or better
performance than the best performance yielded by LBJoin
or New-Super-EGO. Furthermore, we observe that HEG-
Join-SQ yields poor performance. As we explained in Sec-
tion 5.4.3, because the execution time may be overestimated
or underestimated, a processor can be assigned too much
work or too little work relative to its real computational
throughput.

Candidate Point Refinement Throughput Table 4 pre-
sents the candidate point refinement throughput (as previ-
ously defined in Sect. 4.2.3) for LBJoin, New-Super-EGO,
HEGJoin-Dyn, the upper bound (the total throughput given
by adding the throughput of the standalone LBJoin and
New-Super-EGO algorithms), and the ratio of the through-
put HEGJoin-Dyn achieves compared to this upper bound
throughput. The candidate throughput corresponds to the
number of candidate points to refine, divided by the response
time of the algorithm, as shown in Figs. 10 and 11. We
observe a relatively high performance ratio, demonstrating
that we almost reach the performance upper bound of HEG-
Join. Moreover, we also observe that on the Expo8D10M
dataset, we achieve a ratio of more than 1. We explain this
by the fact that Expo8D10M is exponentially distributed
and therefore has very dense regions, as well as very sparse
regions. Thus, the throughput of LBJoin includes query
points with a very low workload, thus increasing its over-
all throughput compared to what HEGJoin-GPU achieves.
Similarly, the throughput of New-Super-EGO includes query
points with a very large workload, thus reducing its over-
all throughput compared to what HEGJoin-CPU achieves.
When combining the two algorithms, we have the GPU com-
puting the query points with the largest workload and the
CPU the points with the smallest workload. The respective
throughput of each component should, therefore, be lower

Table 4   Throughput of candidate points refined (candidates/s) by LBJoin, New-Super-EGO, the upper bound of LBJoin plus New-Super-EGO,
HEGJoin-Dyn, and the performance ratio between HEGJoin-Dyn and the upper bound across several datasets. Results from Platform 1

Dataset � S LBJoin New-Super-EGO Upper Bound HEGJoin-Dyn Perf. Ratio

Expo2D2M 0.002 9392 893,877,929 2,812,071,408 3,705,949,337 3,185,072,965 0.86
Expo4D2M 0.01 9262 672,847,132 1,777,133,999 2,449,981,131 2,209,642,354 0.90
Expo8D2M 0.015 157 3,881,606,529 1,410,542,112 3,659,149,867 3,372,066,683 0.92
Expo2D10M 0.0004 1985 1,601,136,521 2,042,081,926 3,643,218,447 3,335,696,291 0.92
Expo4D10M 0.004 1630 2,809,451,506 2,334,736,697 5,144,188,204 4,531,486,011 0.88
Expo8D10M 0.012 167 2,233,156,849 1,010,004,731 3,243,161,581 4,013,791,675 1.24
SW2DA 1.5 5818 1,024,556,980 3,419,458,232 4,444,015,212 3,520,012,593 0.79
SDSS 0.002 31 1,798,770,443 2,208,414,897 4,007,185,340 3,673,303,538 0.92
Gaia 0.0003 455 1,696,613,608 2,347,964,353 4,044,577,961 2,903,111,440 0.72
OSM 0.00003 571 1,287,786,499 2,725,941,526 4,013,728,025 2,596,190,956 0.65
SW3DA 3.0 13,207 796,136,506 4,360,015,024 5,156,151,530 4,354,214,277 0.84

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

for the GPU and higher for the CPU, than their throughput
when computing the entire dataset.

Performance ratios lower than 1 (Table 4) indicate that
there are several bottlenecks, including contention for mem-
ory bandwidth, with the peak bandwidth potentially reached
when concurrently storing the results from the CPU and the
GPU. We particularly observe this on low dimensionality
and for low selectivity, as it yields less computation and
higher memory pressure than in higher dimensions or for
higher selectivity (Figs. 10 and 11). We confirm this by
examining the ratio of kernel execution time over the time
to compute all batches of LBJoin. Focusing on the datasets
with the minimum and maximum performance ratio from
Table 4, we find that on Gaia, LBJoin has a kernel execu-
tion time ratio of 0.06, while on Expo8D10M, LBJoin has
a kernel execution time ratio of 0.98. Hence, most of the
Gaia execution time is spent on memory operations, while
on Expo8D10M, the execution time is mostly spent on com-
putation. When executing LBJoin on Gaia (and other data-
sets with low ratios in Table 4), we observe that the use of
the GPU hinders the CPU by using a non-negligible fraction
of the total available memory bandwidth.

5.4.5 � Load Balancing Efficiency

We define the load imbalance of HEGJoin as follows. Given
the total execution time T, the time tGPU ( tCPU ) at which the
GPU (CPU) ends its work, we characterize the load imbal-
ance ratio as k = (|tGPU − tCPU|)∕T  . A load imbalance ratio
close to 0 therefore indicates that the CPU and GPU ended
their work at roughly the same time, and thus, that the load
imbalance between the CPU and GPU is low. The results we
show in this section are from Platform 1.

Figure 12 plots the load imbalance ratio of (a) HEGJoin-
Dyn, (b) HEGJoin-SQ and (c) HEGJoin-SC across all the
datasets we present in Table 2. We observe in Fig. 12a that
HEGJoin-Dyn (Sect. 4.2.1) achieves a fairly good load
balancing, as it achieves an average load imbalance ratio
of k = 0.14 . Furthermore, the datasets in higher dimen-
sions (such as Expo6D- and Expo8D-) are distinguished
by a high load imbalance (with the highest load imbalance
ratio, k = 0.62 , recorded on the Expo8D10M dataset and for
� = 0.72 × 10−2 ). We explain this by the fact that the compu-
tation on these datasets is made in only a few large batches
(Sect. 3.1.2) and thus explained by the CPU and GPU less
frequently accessing the shared deque than in lower dimen-
sions. While having more batches with a reduced size would
improve load balancing, it would negatively impact the
GPU’s performance, as the GPU may be underutilized.

Figure 12b plots the load imbalance ratio of the static par-
titioning based on query points, HEGJoin-SQ (Sect. 4.2.2).
We immediately observe a high average load imbalance of
k = 0.53 , meaning that on average, the CPU or GPU spend
half of the execution time idle. Hence, HEGJoin-SQ yields
a load imbalance of up to k = 0.91 on the Expo4D10M
dataset when � = 4.0 × 10−3 . Considering that HEGJoin-
SC is usually more efficient than HEGJoin-SQ (Figs. 10
and 11) and yet uses the same model to predict the execution
time, the high load imbalance of HEGJoin-SQ is therefore
explained by how the work is partitioned between the CPU
and GPU, based on query points. Indeed, as we explained
above (Sect. 5.4.4), on datasets such as Expo8D2M and
Expo8D10M (Fig. 10e and f), as the query points are sorted
by workload, the workload assigned to the GPU when par-
titioning based on query points is higher than the workload
assigned when partitioning based on the number of candi-
date points to refine. Examining the average load imbalance

10−4 10−2 100
ε

0.0

0.2

0.4

0.6

0.8

1.0
Lo
ad

Im
ba
la
nc
e
R
at
io
(k
)

Avg. Imbalance
SW2DA
SW2DB

SW3DA
SW3DB
SDSS

Gaia
OSM
Expo2D2M

Expo3D2M
Expo4D2M
Expo6D2M

Expo8D2M
Expo2D10M
Expo3D10M

Expo4D10M
Expo6D10M
Expo8D10M

10−4 10−2 100
ε

10−4 10−2 100
ε

(a) HEGJoin-Dyn (b)HEGJoin-SQ (c) HEGJoin-SC

Fig. 12   Load imbalance ratio of (a) HEGJoin-Dyn, b HEGJoin-SQ
and c HEGJoin-SC on all the datasets we use for our experiments,
and we described in Table 2. The horizontal dashed line corresponds

to the average load imbalance k, and is as follows: a k = 0.14 , b
k = 0.53 and c k = 0.32 . Results from Platform 1

	 B. Gallet, M. Gowanlock

1 3

across all values of � of the SW2DA dataset, we observe that
the average load imbalance is k = 0.12 for HEGJoin-Dyn,
k = 0.22 for HEGJoin-SC, and k = 0.57 for HEGJoin-SQ.
However, on the Expo8D10M dataset and for all the val-
ues of � we experiment on this dataset with, the average
load imbalance is k = 0.46 for HEGJoin-Dyn, k = 0.66 for
HEGJoin-SC, while k = 0.29 for HEGJoin-SQ. Hence, the
situations where HEGJoin-SQ achieves a low load imbal-
ance are essentially exceptions to the rather bad performance
of HEGJoin-SQ, as they are the result of the model’s inac-
curacy in such situations.

Figure 12c plots the load imbalance ratio of HEGJoin-
SC, i.e., HEGJoin using the static partitioning based on
the number of candidate points to refine (Sect. 4.2.3). We
observe an average load imbalance ratio of k = 0.32 , which
is between the average load imbalance ratio of HEGJoin
( k = 0.14 ) and HEGJoin-SQ ( k = 0.53 ). Furthermore, the
highest load imbalance yielded by this static partitioning
strategy is on the Expo8D10M dataset when � = 0.96 × 10−2 ,
where k = 0.89 . The issue on this dataset is the same as
when partitioning based on query points: the model is not
able to predict situations where the execution time of one of
the processors does not increase as the model predicts it will
(in this case the execution time of LBJoin). Considering that
the execution time of LBJoin is overestimated and that the
execution time of New-Super-EGO is underestimated, the
GPU is assigned a lower workload and the CPU a higher
workload than what they are able to process within the mod-
eled execution time. Finally, and despite HEGJoin-SC hav-
ing a higher load imbalance than HEGJoin-Dyn, we observe
that HEGJoin-SC is roughly as efficient as HEGJoin-Dyn on
many datasets and values of �.

5.4.6 � Data Transfer Overhead of HEGJoin

In this section, we evaluate the overhead of the data trans-
fers between the CPU’s main memory and the GPU’s
global memory, regardless of their direction (from the
CPU to the GPU, and vice versa), which is known to be
a bottleneck due to the relatively low memory bandwidth
of the PCIe-3 interconnect [38]. In Table 5, we report the
time taken by all the data transfers between the CPU and
GPU, the total execution time, and the ratio of the data
transfers time to the total execution time, across a selec-
tion of datasets and � values. The values are recorded when
using HEGJoin-Dyn on Platform 2, over a single trial, and
are measured using the Nvidia Visual Profiler. A ratio
close to zero indicates that the data transfers are negligible
relative to the total execution time of the algorithm, while
higher ratios account for a large fraction of the total execu-
tion time and thus may degrade performance. Recall that
we use three streams to overlap data transfers with com-
putation (Sect. 3.1.2). However, since there is not a direct
way to account for the overlap of data transfers with kernel
execution (computation), we consider here that no such
overlap occurs. Therefore, ratios we report in Table 5 cap-
ture the upper bound (worst-case) data transfer overhead.

We observe in Table 5 that the ratios of the data trans-
fers time to the total execution time of HEGJoin-Dyn are
relatively low across our experiments, despite only cap-
turing the upper bound as described above. Furthermore,
the experiments with the highest selectivity (e.g., SW3DA
for � = 3.0 ) or the largest datasets (e.g., Gaia) yield the
highest overhead ratios, due to the large result set size
that must be transferred from the GPU to the CPU, or
large datasets that must be transferred from the CPU to the

Table 5   Total time taken by
data transfers between the CPU
and the GPU, the total execution
time of the algorithm, and the
upper bound overhead ratio of
the data transfers time to the
execution time when using
HEGJoin-Dyn 

A ratio close to zero indicates an insignificant overhead incurred by data transfers compared to the total
execution time. The ratios do not account for the periods of time where the data transfers and the kernel
executions overlap. The times were recorded on the Nvidia Visual Profiler over a single time trial using
Platform 2

Dataset � S Data transfer
time (s)

Execution time (s) Upper bound
overhead
ratio

Expo2D2M 0.002 9342 5.11 30.99 0.16
Expo4D2M 0.01 9262 9.22 81.97 0.11
Expo8D2M 0.015 157 0.22 18.47 0.01
Expo2D10M 0.0004 1985 6.69 27.16 0.25
Expo4D10M 0.004 1630 8.21 55.27 0.15
Expo8D10M 0.012 167 1.19 116.61 0.01
SW2DA 1.5 5818 2.66 13.91 0.19
SDSS 0.002 31 7.72 29.74 0.26
Gaia 0.0003 455 9.77 37.83 0.26
OSM 0.00003 571 8.73 36.98 0.24
SW3DA 3.0 13,207 9.41 40.73 0.23

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

GPU. However, in these cases, the relatively high selec-
tivity also yields a large number of batches to compute,
making it easier to overlap data transfers with kernel exe-
cutions, which we could not account for here. On experi-
ments with a lower selectivity (e.g., Expo8D10M when
� = 0.012 ), the data transfers account for an insignificant
amount of time compared to the high total execution time
of HEGJoin-Dyn, due to the relatively small size of the
result set that needs to be transferred from the GPU to
the CPU. Overall, and given that the overhead ratios in
Table 5 consist of an upper bound, we consider that the
data transfers between the CPU and the GPU are margin-
ally impacting the performance of HEGJoin.

5.5 � Discussion

We summarize and discuss the major research findings
in this paper. We find that HEGJoin using the on-demand
work queue (HEGJoin-Dyn) outperforms the two static
partitioning methods (HEGJoin-SQ and HEGJoin-SC) on
most values of � . Despite this finding, HEGJoin-Dyn does
not achieve low load imbalance between the CPU and GPU
components of the algorithm across all experimental sce-
narios (e.g., in Fig. 12 there is a mean load imbalance of
k = 0.14 ). Therefore, dynamically assigning work to the
CPU and GPU components of the algorithm is challeng-
ing, even when distributing the work on-demand. Part of
the reason load imbalance occurs is because the perfor-
mance characteristics are fundamentally data-dependent
regardless of the self-join algorithm (assuming such an
algorithm uses the search-and-refine strategy). Query
points have differing amounts of work to compute, so it is
difficult to split the work and obtain low load imbalance
between the CPU and GPU regardless of the method used
to distribute the work.

Regarding our performance models, we find that indi-
vidually modeling the response time of New-Super-EGO
and LBJoin is accurate in some cases, and inaccurate in
others (Fig. 8). We constrained the model to only require a
single time measurement of New-Super-EGO and LBJoin on
each dataset. This restriction means that if the response time
increases nonlinearly as a function of the search volume,
then the model is unable to adequately capture the measured
response time. This led to the models overestimating the
response time in some cases, yielding a poor distribution
of work between the CPU and GPU for the static splitting
strategies (HEGJoin-SQ and HEGJoin-SC).

Our static partitioning strategies that distribute the work
based on the performance models considered: (i) all query
points have an identical amount of work to compute (HEG-
Join-SQ), and (ii) query points have a varying amount of
work to compute based on the size of each query point’s
candidate set (HEGJoin-SC). A good distribution of work

to the CPU and GPU requires that the models are able to
adequately capture performance, and we demonstrated this
by showing that the partitioning strategy based on (ii) out-
performs (i) above. Despite HEGJoin-SC being able to cap-
ture the number of candidate points that need to be refined
per query point, we find that the model was unable to capture
several performance characteristics that degraded the perfor-
mance of this static partitioning strategy in some cases. We
outline some factors that contribute to poor model accuracy
as follows.

1.	 The size of the GPU batches must be substantially larger
to saturate GPU resources; therefore, this increases the
chances that the CPU will be starved of work toward the
end of the computation, leading to non-negligible load
imbalance.

2.	 The GPU component of HEGJoin reduces the main
memory bandwidth of the CPU component; therefore, if
� and data properties lead to a memory-bound execution,
the GPU’s memory operations will reduce the CPU’s
available memory bandwidth, which will lead to load
imbalance.

3.	 Depending on data properties and � , the GPU may
be underutilized due to many factors, including those
related to the SIMT architecture. Typically, this occurs
when we observe that the response time is roughly “flat”
with increasing � (Fig. 10e and f). Since the GPU may
be underutilized, increasing � has little impact on per-
formance, which causes the model to overestimate the
response time. An example of this is shown in Fig. 9d
by comparing the execution time of HEGJoin-SC and
model curves.

4.	 Algorithms for the CPU typically achieve the best per-
formance (lowest response time) if they are work-effi-
cient. However, the GPU’s architecture can break this
work-efficient assumption, as algorithms designed for
the GPU may be work-inefficient but achieve a lower
response time than a work-efficient algorithm that per-
forms the same task [39]. Consequently, modeling the
performance of a GPU-only algorithm is challenging,
and the addition of a concurrently executing CPU algo-
rithm exacerbates this problem.

In summary, this paper yields insight into the self-join
as executed on heterogeneous architectures, which neces-
sitates a comprehensive examination of the problem of
work distribution between architectures. The insights
described above outline several challenges related to split-
ting the work using static and dynamic partitioning strate-
gies. Despite these aforementioned challenges, HEGJoin is
more robust to dataset characteristics and search distance, as
we find that the algorithm generally outperforms the CPU/
GPU-only counterparts. We show the speedup of HEGJoin

	 B. Gallet, M. Gowanlock

1 3

over New-Super-EGO and LBJoin across all our datasets
(Table 2) and evaluated on two different platforms in Fig. 13.
We thus observe that HEGJoin-Dyn is, independently from
the platform we used, on average more efficient than LBJoin
and New-Super-EGO.

6 � Conclusion

In this paper, we propose HEGJoin, which is to the best of
our knowledge the first data-parallel heterogeneous and con-
current CPU-GPU algorithm that computes distance similar-
ity searches and that leverages LBJoin and Super-EGO, two
state-of-the-art algorithms to compute distance similarity
searches on the GPU and CPU, respectively. While the com-
putation of distance similarity searches is memory-bound
in lower dimensions, it becomes compute-bound in higher
dimensions. In both of these situations, the GPU is very
suitable at computing distance similarity searches, due to
its higher computational throughput and memory bandwidth
compared to the CPU.

We propose three work partitioning strategies to assign
work to the CPU and GPU; particularly, we propose a
dynamic work partitioning strategy that assigns work to the
CPU and GPU on-demand through a shared deque, in addi-
tion to two static partitioning strategies based on the num-
ber of query points, and based on the number of candidate

points that will need to be refined. The dynamic partition-
ing strategy simply does not consider the overall workload
of HEGJoin and is efficient because of the shared deque
and its on-demand work assignment to the CPU and GPU.
In contrast, the static partitioning strategy HEGJoin-SQ is
workload-oblivious, while HEGJoin-SC is workload-aware.

We described several insights into the work partitioning
problem between the CPU and GPU based on the static par-
titioning strategies. To summarize, the use of two different
architectures, combined with two different algorithms makes
modeling HEGJoin a challenging task. This led to dynamic
partitioning being generally more efficient than the two
static partitioning strategies. Despite the challenges of stati-
cally partitioning the work, we find that HEGJoin with the
dynamic deque is more robust to data distributions and the
search radius of the self-join than the CPU-only and GPU-
only algorithms. Consequently, HEGJoin outperforms the
CPU/GPU-only algorithms in most experimental scenarios.

The dynamic partitioning strategy achieved the best
performance. Future work should examine different ways
to enhance the dynamic partitioning method described
in this paper, while still being able to accommodate the
GPU’s requirement of processing large batches of work to
achieve high search throughput. By narrowing our focus on
this task, we may be able to further reduce the load imbal-
ance observed, particularly on higher-dimensional datasets.
Another research direction is to use nonparametric models

10−4 10−2 100
ε

0

2

4

6

H
E
G
Jo

in
-D

y
n
Sp

ee
du
p
(u
)

Avg. Speedup
SW2DA
SW2DB
SW3DA
SW3DB
SDSS
Gaia
OSM
Expo2D2M
Expo3D2M
Expo4D2M
Expo6D2M
Expo8D2M
Expo2D10M
Expo3D10M
Expo4D10M
Expo6D10M
Expo8D10M

10−4 10−2 100
ε

0

2

4

6

8

H
E
G
Jo

in
-D

y
n
Sp

ee
du
p
(u
)

10−4 10−2 100
ε

0

5

10

15

H
E
G
Jo

in
-D

y
n
Sp

ee
du
p
(u
)

10−4 10−2 100
ε

0

1

2

3

H
E
G
Jo

in
-D

y
n
Sp

ee
du
p
(u
)

(a) New-Super-EGO (Platform 1) (b) LBJoin (Platform 1)

(c) New-Super-EGO (Platform 2) (d) LBJoin (Platform 2)

Fig. 13   Average speedup of HEGJoin-Dyn over a New-Super-EGO
and b LBJoin on Platform 1, and over c New-Super-EGO and d
LBJoin on Platform 2, across all datasets (Table 2). The horizontal

dashed line corresponds to the average speedup u and is as follows: a
u = 1.50 , b u = 1.59 , c u = 2.99 , and d u = 1.23 . The horizontal solid
line corresponds to a speedup of u = 1.0

Heterogeneous CPU‑GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies﻿	

1 3

to statically split the work between the CPU and GPU, which
may be able to better capture the complexity of the algo-
rithm. Another possibility is to use an adaptive model that
could systematically select the best work partitioning strat-
egy based on data characteristics.

Acknowledgements  This material is based upon work supported
by the National Science Foundation under Grant No. 1849559. We
thank Frédéric Loulergue for letting us use his platform to conduct
our experiments.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Böhm C, Braunmüller B, Breunig MM, Kriegel H-P (2000) High
Performance clustering based on the similarity join. In: Proceed-
ings of the international conference on information and knowledge
management, pp 298–305

	 2.	 Böhm C, Braunmüller B, Krebs F, Kriegel H-P (2001) Epsilon
grid order: An algorithm for the similarity join on massive high-
dimensional data. In: Proceedings of the ACM SIGMOD inter-
national conference on management of data, pp 379–388. ISBN
1-58113-332-4

	 3.	 Kalashnikov DV (2013) Super-EGO: fast multi-dimensional simi-
larity Join. VLDB J 22(4):561–585

	 4.	 Böhm C, Noll R, Plant C, Zherdin An (2009) Index-supported
similarity join on graphics processors, pp 57–66

	 5.	 Lieberman MD, Sankaranarayanan J, Samet H (2008) A fast
similarity join algorithm using graphics processing units. In:
2008 IEEE 24th international conference on data engineering, pp
1111–1120

	 6.	 Gallet B, Gowanlock M (2020) Load imbalance mitigation opti-
mizations for GPU-accelerated similarity joins. In: Proceedings
of the 2019 IEEE international parallel and distributed processing
symposium workshops, pp 396–405, https​://githu​b.com/benoi​tgall​
et/self-join-hpbdc​2019 (Accessed 17 June 2019)

	 7.	 Liao S, Lopez MA, Leutenegger ST (2001) High dimensional
similarity search with space filling curves. In: Proceedings 17th
international conference on data engineering, pp 615–622

	 8.	 Razenshteyn I, Schmidt L, Andoni A, Indyk P, Laarhoven T
(2020) FALCONN: similarity search over high-dimensional data,
2015–2016. https​://falco​nn-lib.org/ (Accessed 17 June 2019)

	 9.	 Bellman RE (1961) Adaptive control processes: a guided tour.
Princeton University Press, Princeton

	10.	 Awad MA, Ashkiani S, Johnson R, Farach-Colton M, Owens JD
(2019) Engineering a High-performance GPU B-Tree. In: Pro-
ceedings of the 24th symposium on principles and practice of
parallel programming, pp 145–157. ISBN 978-1-4503-6225-2

	11.	 Yan Z, Lin Y, Peng L, Zhang W (2019) Harmonia: a high through-
put B+Tree for GPUs. In: Proceedings of the 24th symposium

on principles and practice of parallel programming, pp 133–144.
ISBN 978-1-4503-6225-2

	12.	 Jinwoong K, Sul-Gi K, Beomseok N (2013) Parallel multi-dimen-
sional range query processing with R-trees on GPU. J Parallel
Distrib Comput 73(8):1195–1207 ISSN 07437315

	13.	 Kim J, Jeong W, Nam B (2015) Exploiting massive parallelism
for indexing multi-dimensional datasets on the GPU. IEEE Trans
Parallel Distrib Syst 26(8):2258–2271 ISSN 1045-9219

	14.	 Prasad SK, McDermott M, He X, Puri S (2015) GPU-based paral-
lel R-tree construction and querying. In: 2015 IEEE international
parallel and distributed processing symposium workshops, pp
618–627

	15.	 Jinwoong K, Beomseok N (2018) Co-processing heterogeneous
parallel index for multi-dimensional datasets. J Parallel Distrib
Comput 113:195–203 ISSN 0743-7315

	16.	 Gowanlock M (2019) KNN-joins using a hybrid approach:
exploiting CPU/GPU workload characteristics. In: Proceedings
of the 12th workshop on general purpose processing using GPUs,
pp 33–42, ISBN 978-1-4503-6255-9

	17.	 Shahvarani A, Jacobsen H-A (2016) A hybrid B+-tree as solution
for in-memory indexing on CPU-GPU heterogeneous comput-
ing platforms. In: Proceedings of the international conference on
management of data, pp 1523–1538. ISBN 978-1-4503-3531-7

	18.	 Grewe D, O’Boyle MFP (2011) A static task partitioning approach
for heterogeneous systems using OpenCL. In: Compiler construc-
tion, pp 286–305. ISBN 978-3-642-19861-8

	19.	 Ogata Y, Endo T, Maruyama N, Matsuoka S (2008) An efficient,
model-based CPU-GPU heterogeneous fft library. In: 2008 IEEE
international symposium on parallel and distributed processing,
pp 1–10

	20.	 Ohshima S, Kise K, Katagiri T, Yuba T (2007) Parallel process-
ing of matrix multiplication in a CPU and GPU heterogeneous
environment, pp 305–318

	21.	 NVIDIA. Nvidia Ampere Whitepaper (2020) https​://www.nvidi​
a.com/conte​nt/dam/en-zz/Solut​ions/Data-Cente​r/nvidi​a-amper​
e-archi​tectu​re-white​paper​.pdf (Accessed 17 June 2020)

	22.	 Nvidia (2020a) CUDA toolkit documentation: performance guide-
lines. https​://docs.nvidi​a.com/cuda/index​.html (Accessed 17 June
2020)

	23.	 Nvidia (2020b) CUDA C++ programming guide. https​://
docs.nvidi​a.com/cuda/cuda-c-progr​ammin​g-guide​/index​.html
(Accessed 17 June 2020)

	24.	 Jon Louis Bentley (1975) Multidimensional binary search trees
used for associative searching. Commun ACM 18(9):509–517

	25.	 Bayer R, McCreight EM (1972) Organization and maintenance
of large ordered indexes. Acta Informatica 1(3):173–189 ISSN
1432-0525

	26.	 Comer D (1979) The ubiquitous B-tree. ACM Comput Surv
11(2):121–137 ISSN 0360-0300

	27.	 Guttman A (1984) R-Trees: a dynamic index structure for spatial
searching. SIGMOD Rec 14(2):47–57

	28.	 Sellis T, Roussopoulos N, Faloutsos C (1987) The R+-Tree: a
dynamic index for multi-dimensional objects. In: Proceedings of
the 13th VLDB conference, pp 507–518

	29.	 Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The R*-
tree: an efficient and robust access method for points and rectan-
gles. In: Proceedings of the ACM SIGMOD international confer-
ence on management of data, pp 322–331 . ISBN 0-89791-365-5

	30.	 Gowanlock M, Karsin B (2019) Accelerating the similarity self-
join using the GPU. J Parallel Distrib Comput 133:107–123

	31.	 Finkel RA, Bentley JL (1974) Quad trees: a data structure for
retrieval on composite keys. Acta Informatica 4(1):1–9 ISSN
1432-0525

	32.	 Matam K, Indarapu SR, Krishna B, Kothapalli K (2012) Sparse
matrix-matrix multiplication on modern architectures, pp 1–10

http://creativecommons.org/licenses/by/4.0/
https://github.com/benoitgallet/self-join-hpbdc2019
https://github.com/benoitgallet/self-join-hpbdc2019
https://falconn-lib.org/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

	 B. Gallet, M. Gowanlock

1 3

	33.	 Perdacher M, Plant C, Böhm C (2019) Cache-oblivious high-per-
formance similarity join. In: Proceedings of the 2019 international
conference on management of data, SIGMOD ’19, pp 87–104.
ACM. https​://doi.org/10.1145/32998​69.33198​59

	34.	 MIT Haystack Observatory (2020) Space weather datasets. ftp://
gemin​i.hayst​ack.mit.edu/pub/infor​matic​s/dbsca​ndat.zip (Accessed
17 June 2020)

	35.	 Alam S, Albareti F, Prieto C et al (2015) The eleventh and twelfth
data releases of the sloan digital sky survey: final data from SDSS-
III. Astrophys J Suppl Ser 219:58

	36.	 Gaia DR 2 (2018) https​://cosmo​s.esa.int/web/gaia/dr2 (Accessed
17 June 2020)

	37.	 OpenStreetMap Bulk GPS Point Data (2012) https​://blog.opens​
treet​map.org/2012/04/01/bulk-gps-point​-data/ (Accessed 17 June
2020)

	38.	 Li A, Song SL, Chen J, Li J, Liu X, Tallent NR, Barker KJ (2020)
Evaluating modern gpu interconnect: pcie, nvlink, nv-sli, nvswitch
and gpudirect. IEEE Trans Parallel Distrib Syst 31(1):94–110

	39.	 Dakkak A, Li C, Xiong J, Gelado I, Hwu W-m (2019) Accelerat-
ing reduction and scan using tensor core units. In: Proceedings of
the ACM international conference on supercomputing, pp 46–57

https://doi.org/10.1145/3299869.3319859
ftp://gemini.haystack.mit.edu/pub/informatics/dbscandat.zip
ftp://gemini.haystack.mit.edu/pub/informatics/dbscandat.zip
https://cosmos.esa.int/web/gaia/dr2
https://blog.openstreetmap.org/2012/04/01/bulk-gps-point-data/
https://blog.openstreetmap.org/2012/04/01/bulk-gps-point-data/

	Heterogeneous CPU-GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies
	Abstract
	1 Introduction
	2 Background
	2.1 Problem Statement
	2.2 GPU Architecture
	2.3 Related Work
	2.3.1 Data Indexing
	2.3.2 Workload Partitioning

	3 Leveraged Work
	3.1 GPU Algorithm: LBJoin
	3.1.1 Grid Indexing
	3.1.2 Batching Scheme
	3.1.3 Sort by Workload and Work Queue
	3.1.4 GPU Kernel

	3.2 CPU Algorithm: Super-EGO
	3.2.1 Dimension Reordering
	3.2.2 EGO Sort
	3.2.3 Join Method
	3.2.4 Parallel Algorithm

	4 Heterogeneous CPU-GPU Algorithm: HEGJoin
	4.1 Shared Work Queue
	4.2 Workload Partitioning
	4.2.1 Dynamic Work Partitioning Strategy
	4.2.2 Static Partitioning Strategy Based on Query Points
	4.2.3 Static Partitioning Strategy Based on Candidate Points
	4.2.4 Summary of Work Partitioning Strategies

	4.3 Batching Scheme: Complying with Non-Increasing Workload
	4.4 GPU Component: HEGJoin-GPU
	4.5 CPU Component: HEGJoin-CPU

	5 Experimental Evaluation
	5.1 Selectivity
	5.2 Datasets
	5.3 Methodology
	5.4 Results
	5.4.1 Performance of New-Super-EGO
	5.4.2 Candidate Point Pruning Efficiency of LBJoin and New-Super-EGO
	5.4.3 Model Validation for HEGJoin-SQ and HEGJoin-SC
	5.4.4 Performance of the Work Partitioning Strategies
	5.4.5 Load Balancing Efficiency
	5.4.6 Data Transfer Overhead of HEGJoin

	5.5 Discussion

	6 Conclusion
	Acknowledgements
	References

