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Abstract—The distance similarity self-join is widely used in
database applications and is defined as joining a table on itself
using a distance predicate. The similarity self-join is often used in
spatial applications and is a building block of other algorithms,
such as those used for data analysis. In this paper, we propose
several new optimizations mitigating load imbalance of a GPU-
accelerated self-join algorithm. The data-dependent nature of the
self-join makes the algorithm potentially unsuitable for the GPU’s
architecture, due to variance in workloads assigned to threads.
Consequently, we propose a method that reduces load imbalance
and subsequent thread divergence between threads executing in a
warp by considering the total workload assigned to each thread,
and forcing the GPU’s hardware scheduler to group threads with
similar workloads within the same warp. Also, by leveraging
a grid-based index, we propose a new balanced computational
pattern for both reducing the number of distance calculations
and the workload variance between threads. Moreover, we exploit
additional parallelism by increasing the workload granularity to
further improve computational throughput and workload balance
within warps. Our solution achieves a speedup of up to 9.7× and
1.6× on average against another GPU algorithm, and up to 10.7×
with an average of 2.5× against a CPU state-of-the-art parallel
algorithm.

Index Terms—GPGPU, Load balancing, Query Optimization,
Range Query, Self-join

I. INTRODUCTION

Given a dataset, the distance similarity self-join performs

a range query around each point in the dataset to find each

point’s neighbors within a distance ε. The operation is used to

find objects that share common properties. In databases, the

self-join joins a table on itself, and this operation has been used

in various fields as a building block to several algorithms such

as data cleaning [1], near-duplicate detection [2], document

similarity [3], or clustering algorithms [4]–[6].

Given a dataset, D, finding all the points within ε of

a query point q is an expensive operation. A brute force

implementation consisting of two nested loops has a time

complexity of O(|D|2) [7]. Hence, several optimizations have

been proposed to improve the performance of the distance

similarity self-join, including indexing schemes, which allow

pruning the search space, thus avoiding comparisons between a

point and every other point in the dataset. There are hierarchi-

cal and non-hierarchical indexing schemes. The hierarchical

indexing schemes are typically implemented as trees [8]–

[14], while non-hierarchical structures are often implemented

as grids [15]–[18]. However, as the dimensionality of the

dataset increases, the efficiency of these indexes to prune the

search largely diminishes. This effect is called the curse of

dimensionality [19]–[21].
Several databases operations have already been optimized

to be able to benefit from the most recent high-performance

computing technologies such as the GPUs [12]–[14], [17],

[18], [22]–[24]. Indeed, their architecture and their high-

throughput make them particularly efficient at processing large

volumes of data, and it is no exception for the self-join

operation [17], [18], [24]. Due to their Single Instruction

Multiple Threads (SIMT) architecture, GPUs are very efficient

for parallel computations as threads are executed in groups

called warps in CUDA terminology [25] (which we use

throughout this paper). Threads in a warp are executed in

parallel and in lock-step. Branching during the execution is

resolved by serializing the execution of threads and their exe-

cution pathways, thus causing a loss of parallel efficiency [25].

The GPU’s architecture presents several challenges concerning

the distance similarity self-join. Among these issues, the total

result set size may exceed global memory capacity, particularly

in lower dimensions as shown in [18]. Moreover, as state-of-

the-art CPU algorithms have been extensively studied, the use

of a GPU may not yield a performance advantage over some

of the most efficient parallel CPU algorithms.
The similarity self-join is an irregular application where

each point in the dataset may not have the same number

of distance calculations, depending on the data distribution.

Because of the GPU’s SIMT architecture, some threads with a

higher workload will execute more work and thus, longer than

some other threads within the same warp which will have idle

periods. This issue may lead to intra-warp load imbalance and

therefore decrease the throughput of the self-join. In this paper,

we aim at mitigating the load imbalance of the threads within

a warp, as well as between different warps. In particular, this

paper makes the following contributions:

• We increase the workload granularity of each range query

by assigning multiple threads to compute the distance be-

tween a query point and its potential neighbors. Having

more threads computing the same query point reduces the

workload imbalance within a warp, as these threads will

share the same workload.
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• A new cell access pattern that reduces the number of

redundant point comparisons. This pattern ensures that each

thread assigned to a query point compares to the same

number of cells, thus potentially reducing load imbalance

relative to previous work.

• We reduce intra-warp load imbalance by packing points

with similar workloads, quantified by the number of point

comparisons, into the same warp. We order each warp in

non-increasing order using their quantified total amount of

work. Then, we force the GPU’s hardware scheduler to

execute these warps in this non-increasing order, from most

to least work. This ensures that the GPU cores are saturated

with work by reducing the time that individual threads

within a warp are idle, additionally reducing load imbalance

between GPU cores at the end of the computation.

• As we solve the load balancing issue within individual

kernels, we effectively improve the throughput of the self-

join. As GPU’s cores are active for more of the computation

compared to previous work, we make better use of them.

This paper is organized as follows: Section II outlines

background and related work, Section III presents the proposed

solutions to mitigate load imbalance, Section IV evaluates the

performance of our optimizations, and Section V concludes

the work and discusses future work directions.

II. BACKGROUND

In this section, we first formalize the problem of the distance

similarity self-join, and then present related work. We also

present the work we leverage and optimize.

A. Problem Statement

Let D be a dataset containing points in n dimensions. For

every query point qi, i = 1, . . . , |D|, we denote its coordinates

as xj , j = 1, . . . , n. Thus, q1(x1) represents the coordinate in

the first dimension of the point q1. The distance similarity self-

join will return all points qi ∈ D that are within the Euclidean

distance ε of each other.

Let p, q be two points in D, where p is within ε of q if

dist(p, q) ≤ ε, where dist(p, q) =
√∑n

a=1(p(xa)− q(xa))2.

We elect to use the Euclidean distance as it is a common metric

in low dimensionality and to facilitate a direct performance

comparison with other implementations of the similarity self-

join. All our processing occurs in-memory, and to avoid ex-

ceeding the GPU’s global memory capacity, we use a batching

scheme to incrementally compute the self-join result set across

several batches. Moreover, we define a range query as the

computation of the ε-neighborhood of a query point.

B. Related Work

Many studies have presented improvements to self-join per-

formance. A common property between all these works is the

use of the search-and-refine strategy to improve performance.

The search part leverages a data indexing to bound the search

space to candidate points that may be within ε of a query point.

The refine part consists of computing the distance between

the query point and its candidate points to only consider those

within ε. We present an overview of related work regarding

indexing, other similarity joins, and range queries.

1) Data Indexing: Based on the distance threshold, index-

ing allows for retrieving only those points that are likely to

be within ε of a query point. Index efficacy is based on data

properties. Therefore, an index designed for low dimensional

data is unlikely to be suited for high dimensional data, and

vice versa. Note that all index structures’ efficacy degrades in

higher dimensionality, which is why we focus on the low-

dimensionality similarity self-join. Moreover, some of the

indexing methods are suited to the CPU and are not directly

applicable to the GPU without a significant performance loss

due to several factors. As stated in Section I, hierarchical

indexes such as trees and non-hierarchical structures such

as grids are the two most prominent solutions for efficient

indexing and pruning of the data, thus improving performance.

We detail these two methods as follows.

Tree-based Indexing: Index-trees are widely used data

structures for the similarity self-join and are particularly suited

to those running on a CPU. These indexes are typically

constructed based on the data distribution. The R-Tree [9] uses

bounding boxes to partition data that are stored in the leaves

of the tree. However, the use of bounding boxes as in [9]

makes it not well suited to higher dimensions, as data are likely

to be assigned to more than a single disjoint partition. Thus,

some of the inner bounding boxes will have duplicate data due

to their overlapping, leading to both an increase in memory

usage and traversal time, as the number of paths traversed

increases. Thus, the R*-Tree as proposed in [10] optimizes

the area, the margin and the overlapping of these bounding

boxes, while the X-Tree [11] improves this overlapping in

higher dimensions. The k-d tree [8] is a binary tree organizing

points in a k-dimensional space whose nodes are one of the

two partitions of the space stored in their parent node. The k-d

tree performs reasonably well in higher dimensions as there is

no data duplication, each point is in a single disjoint partition.

Although the use of trees is not particularly suited to an

efficient use on the GPU due to their many branch instructions

and the recursive calls required to traverse them, several works

address these issues to improve their efficiency on the GPU.

Authors from [13] convert the recursive calls of the R-Tree into

sequential accesses, while in [12] they optimize the R-Tree to

execute on the GPU by also avoiding recursive calls, as well

as improving the irregular memory accesses. In [14], a hybrid

R-Tree using both the CPU and the GPU is proposed where

the tree is traversed on the CPU, which then sends the data

contained in the leaves to the GPU. The CPU performs the

tree traversal, which has an irregular execution pattern, and

the GPU performs the filtering of points in the leaf nodes.

Hence, this exploits each architecture’s relative strengths.

Grid-based Indexing: Statically partitioned grid-based in-

dexing consists of partitioning the data into a grid of cells

with length ε in each dimension. This data structure allows

constraining the search of an ε-neighborhood of a query

point to only its surrounding cells as proposed for a CPU

implementation in [15]. Hence, in n dimensions, each point
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needs to consider up to 3n cells. SUPER-EGO, as advanced

in [16], is considered a state-of-the-art CPU parallel algorithm

and uses a non-materialized grid indexing. In [18], the authors

propose a grid indexing targeting the GPU, that only indexes

non-empty cells. By doing so, the data structure memory

footprint remains very low with a O(|D|) space complexity.

We thus compare our optimizations to SUPER-EGO [16] and

this GPU solution [18].

2) Range Queries and Similarity Joins: The Locality-

Sensitivity Hashing (LSH) algorithms, such as the E2LSH al-

gorithm [26]–[28], provides an estimated result of the nearest-

neighbor search and can be used as an estimated distance

similarity search [28] method working well in very high

dimensions. However, we do not consider E2LSH in this paper

as it targets high-dimensional data and computes an estimated

result, whereas we target lower dimensions and an exact result.

The LSS algorithm as proposed in [24] also computes an

estimation of the similarity-join by leveraging the use of a

GPU and by using space-filling curves, turning the similarity

join problem into a sort-and-search problem, which are two

very efficient operations on the GPU. This technique creates

the curves by sorting on the GPU; then each query point

performs an interval search to find candidate points, efficiently

pruning the search.

C. Overview of Leveraged Previous Work

We address load imbalance in the GPU self-join work

of Gowanlock & Karsin [18]. We give a brief overview of

their work, but refer the reader to additional details in [18].

In contrast to previous work, we focus on several kernel

optimizations to mitigate load imbalance.

1) GPU Grid Index: We reuse the ε grid indexing for the

GPU as proposed in [18]. This method uses several arrays

to efficiently store the data into cells of length ε. When

performing a range query around a query point, this technique

bounds the search to only adjacent grid cells. Moreover, as

their method only indexes the non-empty cells, the memory

footprint is very low, having a space complexity of O(|D|),
making it well-suited to the GPU’s limited memory capacity.

Moreover, each thread performs the same bounded search by

accessing neighboring cells, thus reducing the divergence of

the threads within the same warp. We reuse their index, which

we denote as I .

2) Batching Scheme: Depending on the dataset and the

value of ε, the self-join may generate a result set size exceeding

the GPU’s global memory capacity. In [17], [18], the authors

advance a solution to prevent buffer overflow. Through a

sequence of batches consisting of multiple kernel executions,

they compute the self-join while not exceeding the GPU’s

global memory capacity by transferring partial results back

to the host. Thus, with a combination of multiple kernel

invocations, pinned memory, and GPU streams, they avoid all

global memory buffer overflow and are also able to hide data

transfer overhead by overlapping them with kernel executions.

This technique samples a percentage of the dataset to estimate

the total result set size, yielding the number of batches that

D q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

l0 l1 l2 l0 l1 l2 l0 l1 l2 l0 l1 l2

Fig. 1. Example representation of the thread assignment across multiple
batches. |D| = 12, split across 3 batches numbatch = 3 with 4 points
each. l corresponds to the batch computing the query point qi ∈ D, where
i = 1, . . . , 12 and l = (i− 1) mod nbBatch.

need to be executed. In this work, we sample 1% of the entire

dataset. The number of batches, nbBatches, is determined by

the desired maximum result set size for each kernel execution

of size bs. In this paper, we fix this value bs = 108 and we

use 3 streams. Thus, when using 3 streams, the total pinned

memory buffer size is 3×108. We define a batch as one kernel

invocation of the self-join which returns a partial result set,

where several batches are needed to compute the entire self-

join result. Moreover, we define Dl as the data points assigned

to the batch l, where l = 0, 1, . . . , nbBatches− 1.

Figure 1 represents an example of how threads are assigned

across multiple batches. We use for this example a dataset D
of 12 points and 3 batches, nbBatches = 3. Therefore, each

batch has 4 points and thus 4 threads, which are strided across

the dataset. Hence, the query point qi ∈ D is computed by the

batch l = (i− 1) mod nbBatches.

3) GPU Kernel: The GPUCALCGLOBAL kernel, as ad-

vanced by Gowanlock & Karsin in [18], is the foundation

of several of our optimizations. This kernel computes the ε-
neighborhood of each point in a dataset D, and where each

query point in D is computed by a single thread on the GPU.

Thus, |D| threads are used. This kernel is given in Algorithm 1,

and is a slightly modified version from [18] to use an index I
instead of defining each index component described in [18].

The kernel first retrieves the thread’s global id (determined by

the block’s id, the block’s size and the thread id within its

block), then returns if the thread’s global id is larger than the

size of the batch, as it uses one thread per query point (lines 2

and 3). On line 5, the thread gets its point corresponding to its

global id, as well as the neighboring cells on line 6. Then, for

each neighboring cell that was found (line 7), we retrieve the

list of points contained in the cell (line 8). Afterward, for each

candidate point from the neighboring cell (line 9), we compute

the distance between this candidate point and the query point

(line 10). If the candidate point is within ε (line 11), then we

add the pair of both points to the result set (line 12). Finally,

when a query point has completed its distance calculations,

the kernel returns (line 13).

4) Unidirectional Comparison (UNICOMP):
Gowanlock & Karsin [18] have advanced a cell access pattern

designed to eliminate any duplicate calculations between the

points for datasets in any dimension. As the Euclidean distance

is a symmetric function (dist(p, q) = dist(q, p)), they can add

both pairs of points to the result set, with only one distance

calculation. This cell access pattern, although presenting

improved response time in most of their experimental

evaluations, seems to present an uneven workload balance
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Algorithm 1 GPUCalcGlobal Kernel (GPU) from [18]

1: procedure GPUCALCGLOBAL(Dl, I, ε)
2: gid ← getGlobalId()
3: if gid ≥ |Dl| then return
4: resultSet ← ∅
5: point ← Dl[gid]
6: adjCells ← getNeighboringCells(gid)
7: for cell ∈ adjCells do
8: pointsArr ← getPoints(cell)
9: for candidatePoint ∈ pointsArr do

10: result ← calcDistance(point, candidatePoint, ε)
11: if result �= ∅ then
12: atomic: gpuResultSet ← gpuResultSet ∪ result

13: return

between threads. For example, in two dimensions, a point

may compare with points in up to eight adjacent cells,

whereas some points may not compare to any adjacent cell.

The implementation of this UNICOMP cell access pattern is

given in two dimensions in Algorithm 2, as described in [18].

UNICOMP relies on the odd multidimensional coordinates

of the cells to establish an access pattern. It takes as input

the query point point, Ca its multidimensional coordinates,

filteredRngs the range of the non-empty cells in each

dimension, and B the array of non-empty cells. If the first

coordinate of a cell is odd (line 2), then this cell is a part of

the pattern. The algorithm iterates over the first dimension

(line 3), and if the explored cell does not have the same

first index as the origin cell (line 4), then the linear id of

the neighboring cell is calculated (line 5). If this linear id

corresponds to a non-empty cell (line 6), the origin point

is compared to the points of the neighboring cell (line 7).

Lines 8 to 14 are used to iterate over the second dimension.

As this example is for two dimensions indexing, an additional

loop is needed for each additional dimension. The comments

“Green arrows” and “Red arrows” (respectively lines 2 and 8)

refer to the arrows represented in Figure 2.

Algorithm 2 The Unicomp cell access pattern in 2 dimensions

(GPU) from [18]
1: procedure UNICOMP2D(point, Ca, filteredRngs,B)
2: if Ca.x is odd then � Green arrows
3: for x ∈ filteredRngs[1] do
4: if x �= Ca.x then
5: linearID ← getLinearCoord(x, Ca.y)
6: if linearID ∈ B then
7: ComparePoints(point, linearID)

8: if Ca.y is odd then � Red arrows
9: for x ∈ filteredRngs[1] do

10: for y ∈ filteredRngs[2] do
11: if y �= Ca.y then
12: linearID ← getLinearCoord(x, y)
13: if linearID ∈ B then
14: ComparePoints(point, linearID)

15: return

Figure 2 represents the cell access pattern of Unicomp in

two dimensions. The arrows represent the neighboring cells

to compare to, while the numbers in the cells quantify the

number of neighboring cells that are compared.

0 1 2 3 4

0

1

2

3

4

y x

0 2 0 2 0

4 8 6 8 4

0 2 0 2 0

4 8 6 8 4

0 2 0 2 0

Fig. 2. UNICOMP cell access pattern
in two dimensions. The numbers rep-
resent the number of neighboring cells
the origin cell is going to compare, and
the arrows indicate these neighboring
cells. While green arrows indicate an
odd x index, red arrows are for an odd
y index.

III. MITIGATING LOAD IMBALANCE

The SIMT architecture of the GPU makes it well-suited

for highly data-parallel applications. Threads are executed in

groups of 32 called warps [25]. Due to hardware limitations

(e.g., the number of available registers), only a limited number

of warps can be executed concurrently on the GPU. In the case

of the distance similarity self-join, the workload is dependent

on the data distribution, therefore potentially disparate within

threads of the same warp. For example, in a real world dataset,

some points will have few neighbors, and some will have many

neighbors, potentially spanning several orders of magnitude.

In this situation where threads of the same warp have both

points from a dense region and points from a sparse region,

some of these threads will be idle for a longer amount of time

than others. While the threads computing the points from a

dense region of the dataset are still active, this prevents the

execution of a new warp.

Figure 3 is an example representation of the possible

workload imbalance we might face within a warp when

using the original GPUCALCGLOBAL kernel described in

Section II-C3. Due to intra-warp workload imbalance, some of

the threads will be idle while some others will be computing,

thus reducing the GPU’s resources usage efficiency.

W
o
rk

lo
ad

T
im

e

Idle period Active period

q1 q32. . .

Warp 1

q33 q64. . .

Warp 2

. . .

q480. . . q512. . .

Warp 16

Fig. 3. Example representation of the workload across a dataset, with q1 to
q32 query points in the first warp, q33 to q64 query points in the second warp,
and q481 to q512 in the last warp, assuming |D| = 512. This represents the
potential workload imbalance of the original GPUCALCGLOBAL kernel.

A. Increasing the Granularity of each Range Query

The GPU kernel advanced by Gowanlock & Karsin [18]

uses a single GPU thread per query point. Thus, a single thread

is computing every distance calculation between its point and

all the neighboring points. Depending on the properties of the

data, some query points may have many distance calculations

to compute, and therefore large amounts of work. Conse-

quently, if one thread is assigned to compute all of the distance
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calculations, then at the end of a kernel execution, some of

the GPU cores will be idle. Therefore, we can increase the

granularity of the filtering task by assigning multiple threads

to each query point for computing the distances. This reduces

the amount of idle resources at the end of the computation.

An optimization is to use multiple threads per query point,

so each thread is computing a fraction of the distance calcula-

tions of its assigned query point. This will reduce the workload

of each thread, and thus reduce the time needed to find the

neighbors of the query point. Moreover, by assigning the same

workload to each thread of a query point, and as the number

of thread within a warp is fixed, using this optimization will

reduce the intra-warp load imbalance. However, increasing the

total number of threads implies a larger number of warps to

schedule. We define k as the number of threads assigned to a

single query point.

Figure 4 represents how we assign threads to the candidate

points ci of a query point qj . In the present case, we use as an

example a query point q0 with a neighboring cell containing

eight points: c0 to c7, and k = 2. Figure 4 (a) represents how

all candidate points are assigned to the single thread as in the

GPUCALCGLOBAL kernel, while Figure 4 (b) represents the

candidate points being assigned to the two different threads.

For descriptive purpose, we assume k evenly divides the

number of candidate points.

q0 c0 c1 c2 c3 c4 c5 c6 c7

tid0

(a)

q0 c0 c1 c2 c3 c4 c5 c6 c7

tid0 tid1

(b)

Fig. 4. (a) Original assignment of a thread to candidate points, as in [18],
(b) Assignment of threads to candidate points when increasing the distance
calculation granularity, with k = 2 (even case). q0 is a query point with eight
candidate points ({c0,. . . ,c7}). tidi designates the local thread id of the query
point, where i = 0, . . . , k − 1.

B. Cell Access Pattern: Linear ID Unidirectional Comparison

We propose Linear ID Unidirectional Comparison (LID-

UNICOMP) as an optimization to the UNICOMP cell access

pattern advanced in [18]. While UNICOMP relies on extensive

conditional statements to determine whether points of a cell

need to compare to neighboring cells, LID-UNICOMP reuses

the fact that with the grid indexing we use, non-empty cells

have a unique linear id computed from the cell’s coordinates

in n dimensions. The principle of this new cell access pattern

is thus to compute the distance with the points from every

neighboring cell that has a higher linear id than the origin

cell. The cell access pattern of this method is represented

in Figure 5. As we observe if we compare Figure 2 to

Figure 5, when using the LID-UNICOMP pattern, every inner

cell will compare to the same number of neighboring cells.

Depending on the data distribution, this might greatly improve

the workload balance over UNICOMP because it has some

cells comparing to every neighboring cell, and some cells

comparing to none.

0 1 2

0

1

2

4

y x

(a)

0 1 2 3

0

1

2

3

y x

1 1 1 0

3 4 4 2

3 4 4 2

3 4 4 2

(b)

Fig. 5. Overview of the LID-UNICOMP pattern in 2-D. The numbers represent
the number of neighboring cells the origin cell is going to compare to, and the
arrows indicate these neighboring cells. (a) represents the cell access pattern
on its own in 2-D, (b) represents its application on a 2-D grid.

Algorithm 3 gives the implementation of the LID-UNICOMP

cell access pattern. For each neighboring cell (line 3), if the

linear id of the neighboring cell is greater than the linear id

of the origin cell (line 5), then following the LID-UNICOMP

cell access pattern, this cell needs to be evaluated (line 6).

In comparison with the UNICOMP cell access pattern (Sec-

tion II-C4), the implementation of the LID-UNICOMP pattern

is more straightforward as it relies on a linear id calculation

and a single condition, whereas UNICOMP relies on an ex-

tensive combination of loops and conditions. An advantage of

UNICOMP is that it stops searching as soon as an iterated

multidimensional coordinate is even (Algorithm 2, lines 2

and 8), while LID-UNICOMP checks the linear id of all the

non-empty adjacent cells. Consequently, UNICOMP does not

need to iterate over all adjacent cells in comparison to LID-

UNICOMP. Thus, UNICOMP may outperform LID-UNICOMP,

depending on several data-dependent factors.

Algorithm 3 LID-UNICOMP cell access pattern implementa-

tion (GPU)
1: procedure LIDUNICOMP(q, originCell, ε)
2: originId ← linearId(originCell)
3: for c ∈ getNeighborCells(originCell) do
4: neighborId ← linearId(c)
5: if originId < neighborId then
6: evaluateNeighborCell(q, c)

C. Local and Global Load Balancing: Sorting by Workload

Consider two threads t0 and t1, where t0 is assigned a

query point in a sparse region (q0 in Figure 6), and t1 is

assigned a query point in a dense region (q1 in Figure 6).

t0 will perform 14 distance calculations, and t1 will perform

45 distance calculations. If these threads are within the same

warp, t1 will have much more work than t0, and t0 will be

idle for a significant amount of time as it waits for t1.

To reduce the amount of time that threads are idle, a solution

is to sort the points by their workload (number of point

comparisons), such that each warp be assigned threads with

similar workloads in comparison to an unbalanced workload as

in Figure 3. This sorting is achieved by computing the number

of distance calculations of each non-empty cell, i.e., retrieving

their number of neighbors, and assigning points from the cell
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Fig. 6. Illustration of the load imbalance between query points and therefore
between threads, where q0 and q1 are two query points and t0 and t1 two
threads processing the query points q0 and q1 respectively.

with the greatest workload at the beginning of a new array

denoted as D′. Furthermore, as a consequence of the batching

scheme (Section II-C2), the data points assigned to each batch
Dl have a similar total workload due to accessing the data

in a strided manner (Figure 1). SORTBYWL is applied to

each batch D′
l and not D′; therefore warps will not be strictly

assigned points from most workload to least work in the scope

of the entire dataset. However, this ensures that each batch
does not overflow the result set buffer.

D. Forcing the Warp Execution Order using a Work Queue

SORTBYWL does not entirely obviate load imbalance as

threads within the same warp still have different workloads

due to the stride of the threads across the dataset as presented

in Section II-C2. Moreover, the hardware scheduler may not

execute the warps from most workload to least work, as

the scheduler still has control over the execution order of

warps. To obviate these issues, we propose using a priority

queue. While previous work implementing a queue on the

GPU exists [29], they use a distributed queue with dynamic

load balancing where threads can retrieve or give work to

other threads. Moreover, they use their threads for the entire

computation duration, making it unsuitable for our work due

to our batching scheme. Therefore, we do not use the queue

from [29] and extend our SORTBYWL optimization using a

queue that is persistent across all kernel invocations. Thus,

complementary to SORTBYWL which outputs a sorted array

of the points, we use a global counter to indicate the equivalent

of the head of a queue. Each thread increments this counter

through an atomic operation that assigns data points to threads.

By using this optimization, we expect our workload to be

nearly identical between the threads of the same warp, as the

example represented in Figure 7, where the idle periods of the

threads are significantly reduced in comparison to Figure 3.

Figure 8 represents the functioning of our WORKQUEUE

optimization, where D′ is our dataset sorted by workload and

W indicates the total workload of a query point. The workload

is quantified as the number of distance calculations a query

point will perform to refine its candidate set.

Unlike SORTBYWL, we consider the entire dataset D′

(as sorted by workload) when executing batches, and do not

employ adding points to Dl across batches in a strided manner.
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Fig. 7. Representation of balancing the workload between the threads within
the same warp. We use for this example a dataset D = 512.
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D′ q37 . . . q12

32 points
Executed first

q133 . . . q135

32 points
Executed second

. . . q1337 . . . q27

32 points
Executed last

Fig. 8. Representation of the points’ execution order when using the
WORKQUEUE optimization. D′ is the sorted dataset, and W gives the
workload of each query point. The first 32 points with the most workload
will be executed at the beginning within the same warp, while the last 32
points, with the least workload, will be executed at the very end.

This ensures that each warp has the smallest possible variance

in workloads (point comparisons). However, this leads to

large variance in result set sizes across batches, which the

strided Dl batches were designed to avoid. Consequently,

in the WORKQUEUE optimization, we slightly modify the

batching scheme (Section II-C2), and instead of sampling the

entire dataset to estimate the total result set size, we sample

the first 1% of D′ (without striding), which yields a much

larger estimated total result set size. This ensures that our first

batch does not overflow the result set buffer; however, we

execute more batches than when using GPUCALCGLOBAL

or SORTBYWL.

Finally, when we use the WORKQUEUE in combination

with a k > 1, we use cooperative groups introduced with

CUDA 9.0 [30]. We thus create groups of size k where only the

first thread increments the global counter and then shuffles the

returned result to the other threads of the cooperative group.

IV. EXPERIMENTAL EVALUATION

A. Datasets

To evaluate our proposed solutions, we select several

datasets presenting different characteristics such as the dimen-

sionality and size. We consider datasets synthetically generated

with a uniform, and an exponential distribution with λ = 40,

each composed of two million points between two and six

dimensions. We use these both distributions as they present

opposite workloads, and therefore to outline the impact of our

optimizations. For the real world datasets, we use the SW-
datasets [31] with 1.86M and 5.16M points, both in two and

three dimensions representing the latitude and longitude of

the objects in two dimensions, including the total number of
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electrons in the ionosphere as the third dimension. Moreover,

we select 50 million points from the Gaia catalog [32] in

two dimensions. For the synthetic datasets, we denote Expo-
as exponentially distributed datasets and Unif- as uniformly

distributed datasets. The summary of these datasets is given

in Table I. We omit the three, four and five-dimensional data of

our synthetic datasets for the intermediate plots (Figures 9, 10

and 11), as two and six dimensions bound the performance.

TABLE I
SUMMARY OF THE DIFFERENT DATASETS USED FOR THE EXPERIMENTAL

EVALUATION. |D| DENOTES THE NUMBER OF POINTS AND n THE

DIMENSIONALITY.

Dataset |D| n Dataset |D| n Dataset |D| n
Unif2D2M 2M 2 Expo2D2M 2M 2 SW2DA 1.86M 2
Unif3D2M 2M 3 Expo3D2M 2M 3 SW2DB 5.16M 2
Unif4D2M 2M 4 Expo4D2M 2M 4 SW3DA 1.86M 3
Unif5D2M 2M 5 Expo5D2M 2M 5 SW3DB 5.16M 3
Unif6D2M 2M 6 Expo6D2M 2M 6 Gaia 50M 2

B. Methodology

We use a platform composed of 2×Intel E5-2620v4@2.10

GHz for a total of 16 cores, coupled with 128 GiB of RAM and

an Nvidia Quadro P100 (16 GiB of HBM2 global memory).

The GPU code is written in CUDA, while the C/C++ host

code is compiled with the GNU compiler with the O3 flag.

The response times do not include the index construction

time because we do not optimize index construction in the

implementations that we compare to. All other components of

the algorithm are included in the response time.

In all GPU experiments, we use 256 threads per block,

and each data point is represented as a 64-bit floating point.

The parallel CPU SUPER-EGO experiments include the time

to EGO-sort and join, and use 32-bit floating points and

run using 16 threads across 16 physical cores, yielding the

best configuration on our platform. Table II outlines the

optimizations and notation used in the experimental evaluation.

TABLE II
OPTIMIZATIONS AND NOTATION USED THROUGHOUT THE EVALUATION.

Notation Description
GPUCALCGLOBAL Original GPU kernel [18] we compare to.
UNICOMP Original cell access pattern [18] we compare to.
SUPER-EGO State-of-the-art CPU parallel algorithm [16] that

we compare to.
LID-UNICOMP Cell access pattern advanced in Section III-B.
SORTBYWL Sorting by workload optimization (Section III-C).
WORKQUEUE Work-queue optimization (Section III-D).
k Number of thread per query point (Section III-A).

We average the response times over three trials, while

we profile on only three batches as each batch has nearly

identical performance characteristics. Although we retrieve

several different metrics through the Nvidia Profiler [33], we

choose only to report the warp execution efficiency in this

paper, as it is the most relevant metric among those we have

collected regarding the performance of our optimizations.

C. Results

Impact of the New Cell Access Pattern: Here, we evaluate

the response time of the LID-UNICOMP cell access pattern

optimization (Section III-B) in several scenarios and compare

it to the response time of the GPUCALCGLOBAL and UNI-

COMP kernels, the two solutions we aim to improve. Figure 9

plots the response time vs. ε of the GPUCALCGLOBAL kernel,

and the UNICOMP and LID-UNICOMP cell access patterns

on our uniformly and exponentially distributed datasets, in

two and six dimensions. We observe that UNICOMP has a

lower response time than GPUCALCGLOBAL, excepting the

Expo2D2M dataset when ε > 0.12 (Figure 9 (a)). Moreover,

our solution, LID-UNICOMP, improves the performance of

the self-join in most cases, except on the Unif6D2M dataset

(Figure 9 (d)).
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Fig. 9. Response times of the LID-UNICOMP cell access pattern, versus
the GPUCALCGLOBAL kernel and the UNICOMP cell access pattern on our
synthetic datasets. The legend in (a) is used across all subfigures, and we set
k = 1.

To understand these results, we profile the execution of

these three configurations, on the Expo2D2M, Expo6D2M,

Unif2D2M, and Unif6D2M with ε = 0.2, 1.2, 1.0, 8.0, respec-

tively. We report the results in Table III. The warp execution

efficiency is the average percentage of active threads in each

executed warp. We choose this metric as having a high

warp execution efficiency means that only a few threads are

idle during the execution of each warp. The warp execution

efficiency between UNICOMP and LID-UNICOMP is correlated

to the response time. In most cases, as the warp execution

efficiency is higher for LID-UNICOMP than UNICOMP, the

response time is lower, with an exception for the Unif6D2M
dataset (Figure 9 (d)). Regarding the GPUCALCGLOBAL

kernel, despite a higher warp execution efficiency than the

UNICOMP or LID-UNICOMP optimizations, its response time

is higher. This is because both cell access patterns reduce

the number of distance calculations by a factor of roughly

two, thus improving the response time. Thus, the proposed

LID-UNICOMP optimization may be more efficient than the
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previous UNICOMP cell access pattern due to its more evenly

distributed work across threads. Moreover, the low warp

execution efficiency on the exponentially distributed datasets

may reflect intra-warp workload imbalance.

TABLE III
WARP EXECUTION EFFICIENCY (WEE) OF THE GPUCALCGLOBAL

KERNEL AS WELL AS THE UNICOMP AND LID-UNICOMP CELL ACCESS

PATTERNS OVER OUR SYNTHETIC DATASETS AND FOR SPECIFIC VALUES

OF ε. THE TIME CORRESPONDS TO THAT IN FIGURE 9.

GPUCalcGlobal Unicomp Lid-Unicomp
Dataset ε WEE(%) Time(s) WEE(%) Time(s) WEE(%) Time(s)

Expo2D2M 0.2 26.5 55.5 13.2 60.9 18.3 40.4
Expo6D2M 1.2 15.2 42.9 7.8 31.6 10.0 25.5
Unif2D2M 1.0 75.4 5.7 48.94 4.5 69.1 4.6
Unif6D2M 8.0 51.3 3.3 19.25 2.1 40.9 2.4

Impact of Assigning Multiple Threads to Each Query
Point: We now focus on the performance of increasing the

thread granularity, specifically by using eight threads per point

(k = 8). We compare this optimization to the GPUCALC-

GLOBAL kernel, which uses only one thread (k = 1), and

use the same datasets as for the LID-UNICOMP performance

evaluation. Having k > 1 reduces the workload of each thread,

by reducing the number of distance calculations each of them

has to compute. Moreover, this also reduces the workload

variance within a warp, as the threads computing the same

query point will share the same total workload. Figure 10 plots

the response time of the GPUCALCGLOBAL kernel when

k = 1 and when k = 8 on our synthetic datasets. While

the Expo2D2M dataset (Figure 10 (a)) greatly benefits from

the increased granularity when ε ≥ 0.12, the response time

is not impacted on the Expo6D2M dataset (Figure 10 (b))

and performs even worse when ε ≤ 0.9. Regarding the uni-

formly distributed datasets, while Unif2D2M presents a lower

response time when having k = 8 and ε ≥ 0.4 (Figure 10 (c)),

the GPUCALCGLOBAL kernel with k = 1 performs better on

the Unif2D2M dataset (Figure 10 (d)). Therefore, having a low

workload as it is the case for lower values of ε seems not to

be suited to an increase of the workload granularity, although

it does not especially degrade performance. The exception is

on the Unif6D2M dataset, which performs better when k = 1
for every ε values.

Table IV shows the warp execution efficiency and the

response time of the GPUCALCGLOBAL kernel when k = 1
and k = 8. We observe that having more threads greatly

increases the warp execution efficiency, particularly for the

exponentially distributed datasets. This observation is reflected

in the response time, which is lower for our selected values of

ε. However, although the warp execution efficiency is always

higher when k = 8, the response time of this configuration

is higher on the Unif6D2M dataset than for k = 1. We leave

investigating this behavior for future work.
Impact of Reordering the Points by Workload and Forc-

ing Warp Execution Order: We evaluate the performance of

our SORTBYWL and WORKQUEUE optimizations, compared

to GPUCALCGLOBAL. Figure 11 plots the response time vs.

ε of the GPUCALCGLOBAL kernel, and our SORTBYWL
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Fig. 10. Response time of the increase of the granularity when k = 8 versus
k = 1 for the GPUCALCGLOBAL kernel on our synthetic datasets. The
legend in (a) is used across all subfigures.

TABLE IV
WARP EXECUTION EFFICIENCY (WEE) OF THE GPUCALCGLOBAL WITH

k = 1 AND WHEN k = 8 ON SYNTHETIC DATASETS AND FOR SPECIFIC

VALUES OF ε. THE TIME CORRESPONDS TO THAT IN FIGURE 10.

GPUCalcGlobal GPUCalcGlobal, k = 8
Dataset ε WEE (%) Time (s) WEE (%) Time (s)

Expo2D2M 0.2 26.5 55.5 40.8 33.6
Expo6D2M 1.2 15.2 42.9 39.27 42.2
Unif2D2M 1.0 75.4 5.7 80.3 4.4
Unif6D2M 8.0 51.3 3.3 60.9 6.2

and WORKQUEUE optimizations on our uniformly and ex-

ponentially distributed datasets, in two and six dimensions.

Observing the exponentially distributed datasets in two and

six dimensions (Figures 11 (a)-(b)), we see an improvement

in the response time, particularly for higher values of ε. For

smaller values of ε, the workload variance between points

is reduced, thus decreasing the impact of packing the points

based on their workload. Moreover, even without controlling

the execution workflow when using the SORTBYWL opti-

mization, it performs better than GPUCALCGLOBAL in every

case on the exponentially distributed datasets. Nevertheless,

the WORKQUEUE thus seems to be very effective, especially

on datasets with significant variance of workload between

points, as expected. However, sorting the points based on

their workload does not present any significant gain when

datasets are uniformly distributed as every point have a similar

workload, unlike exponentially distributed datasets. We ob-

serve this on Figures 11 (c)-(d)) where neither SORTBYWL or

WORKQUEUE significantly outperform GPUCALCGLOBAL.

In Table V, we observe that the warp execution efficiency

is much higher when using WORKQUEUE. Moreover, an

increase of the warp execution efficiency results in a decrease

of the response time, excepting the Unif2D2M dataset. The

WORKQUEUE presents both the highest warp execution effi-

ciency and the lowest response time on our selected configu-
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Fig. 11. Response time of the SORTBYWL and WORKQUEUE optimizations
against the GPUCALCGLOBAL kernel on our synthetic datasets. The legend
in (a) is used across all subfigures, and we set k = 1.

rations. Therefore, our strategy of packing warps with similar

workloads and forcing the hardware scheduler to execute

warps in order clearly improves performance.

TABLE V
WARP EXECUTION EFFICIENCY (WEE) OF THE GPUCALCGLOBAL

KERNEL, AS WELL AS THE SORTBYWL AND WORKQUEUE

OPTIMIZATIONS ON OUR SYNTHETIC DATASETS AND FOR SPECIFIC

VALUES OF ε. THE TIME CORRESPONDS TO THAT IN FIGURE 11.

GPUCalcGlobal SortByWL WorkQueue
Dataset ε WEE(%) Time(s) WEE(%) Time(s) WEE(%) Time(s)

Expo2D2M 0.2 26.5 55.5 74.6 48.7 83.2 35.6
Expo6D2M 1.2 15.2 42.9 71.4 19.1 95.6 13.1
Unif2D2M 1.0 75.4 5.7 75.4 5.9 83.1 5.6
Unif6D2M 8.0 51.3 3.3 48.2 3.5 48.4 3.0

Combination of Approaches on Real World Datasets:
Figure 12 plots the response time vs. ε using a combina-

tion of our optimizations, including WORKQUEUE with LID-

UNICOMP and k = 8. This combination of optimizations out-

performs GPUCALCGLOBAL and SUPER-EGO across nearly

all experimental scenarios. In particular, our optimizations are

the most effective on the largest workloads (large datasets and

ε). The performance on the real world datasets is limited to

n = 3 dimensions. Thus, the performance of our optimizations

typically converge across the datasets because the workloads

are low at n ≤ 3 dimensions, but we will show that on

higher dimensionality (Figure 13), the combination of all

optimizations will yield larger performance gains (e.g., the

Expo6D2M dataset, Figure 11 (b)).

Table VI shows the warp execution efficiency and the total

response time for selected values of ε from Figure 12. All

of our solutions present a better warp execution efficiency

and overall response time than GPUCALCGLOBAL, which

indicates that warp execution efficiency is a good metric for

assessing load imbalance. Due to the high warp execution effi-

ciency observed across all of our optimizations in Table VI, we

believe that further optimizations to the GPUCALCGLOBAL

kernel are not likely to lead to significant performance gains.

However, new algorithmic designs may improve performance.

TABLE VI
WARP EXECUTION EFFICIENCY (WEE) OF THE GPUCALCGLOBAL, THE

WORKQUEUE, AND THE WORKQUEUE COMBINED WITH LID-UNICOMP

AND k = 8 ON OUR REAL WORLD DATASETS AND FOR SPECIFIC VALUES

OF ε. THE TIME CORRESPONDS TO THAT IN FIGURE 12.

GPUCalcGlobal WorkQueue,
Lid-Unicomp

WorkQueue, k = 8
Lid-Unicomp

Dataset ε WEE(%) Time(s) WEE(%) Time(s) WEE(%) Time(s)
SW2DA 1.2 55.2 15.1 89.1 13.0 80.7 12.5
SW2DB 0.4 54.2 13.8 83.0 13.0 79.7 12.6
SW3DA 2.4 33.7 56.8 93.4 25.2 83.2 21.6
SW3DB 0.8 40.8 14.9 87.1 12.1 82.5 11.7

Gaia 0.04 64.1 37.1 80.3 27.1 78.3 26.7

V. DISCUSSION AND CONCLUSION

The self-join has data-dependent performance behavior and

irregular instructions that make the problem challenging to

solve efficiently on the GPU. Depending on the data dis-

tribution, the self-join leads to load imbalance within each

warp, which limits the GPU’s throughput. Consequently, we

have advanced several optimizations that address load imbal-

ance. We propose a cell access pattern that avoids duplicate

computation. In contrast to previous work, this allows each

point in the dataset to be compared to the same number

of adjacent cells. We increase the granularity of each range

query by assigning each query point multiple threads for

performing the distance calculations. This reduces the number

of varying workloads within each warp. We propose packing

warps with threads assigned similar workloads to reduce the

load imbalance within each warp. Lastly, we ensure that the

GPU’s hardware scheduler executes warps in non-increasing

order of each warp’s assigned work. This reduces inter-warp

load imbalance, which ensures that the warps finish their

execution at similar times, at the end of the kernel execution.

Figure 13 summarizes the performance of our

WORKQUEUE, LID-UNICOMP and k = 8 optimizations

combined on all datasets. From the figure, we find that

using the optimizations outlined in this paper, we are able

to significantly improve the performance over (a) a parallel

CPU implementation, and (b) previous GPU self-join work.

We achieve speedups up to 10.7× over SUPER-EGO and

9.7× over GPUCALCGLOBAL, with an overage of 2.5×
and 1.6× respectively. This work demonstrates that reducing

intra-warp workload imbalance can significantly improve

performance, and thus has implications for other algorithms

with data-dependent performance characteristics.

Future work directions are outlined as follows. We will

apply our optimizations to other applications, especially the

WORKQUEUE, which could be adapted to any self-join in-

dexing structure, contingent upon being able to quantify the

workload. We will investigate dynamically grouping batches
of queries together when using the work queue such that each

batch yields similar result set sizes. Additionally, we will carry
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Fig. 12. Response time vs. ε on real world datasets of the WORKQUEUE optimization, the WORKQUEUE combined with the LID-UNICOMP pattern, the
WORKQUEUE with k = 8, and both combined to the WORKQUEUE compared to the GPUCALCGLOBAL kernel and the SUPER-EGO CPU parallel algorithm.
The legend in the subfigure (a) is used across all subfigures.
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Fig. 13. Speedup of the WORKQUEUE combined to LID-UNICOMP and
k = 8 optimization against the SUPER-EGO parallel algorithm (a), and over
the GPUCALCGLOBAL kernel (b), on several datasets. ε values are plotted
on a log scale to observe all data points.

out a more extensive performance comparison between the

proposed cell access pattern and the one proposed by our

previous work.
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