
Optimizing GPU-Accelerated Similarity Joins: Addressing
Data-Dependent Workloads

Benoît Gallet, Michael Gowanlock
benoit.gallet@nau.edu, michael.gowanlock@nau.edu

School of Informatics, Computing and Cyber Systems, Northern Arizona University

● For a query point q, find all its neighboring points within a
Euclidean distance ε (also called a range query)

● For a dataset D, there are |D| total range queries
● Range queries are independent and memory intensive

○ Suited to the GPU
● Every range query does not have the same number of

distance calculations than the others
○ Different workloads, thus execution time (Fig. 1)

● The workload of a single range query is characterized by the
number of distance calculations computed

Introduction

● Compare GPUCalcGlobal [1], sorting by workload (SortByWL) and our work queue (WorkQueue) [2]
● Focus on the execution time and warp execution efficiency (WEE)

○ Percentage of active threads within a warp: higher is better
● Uniformly distributed datasets have a uniform workload

○ No need to balance the workload between the threads, contrary to exponentially distributed datasets

Results

● Warp execution efficiency impacts response time
● 100% warp execution efficiency may indicate a computational

bound
○ Cannot exceed 100% of active threads per warp

● Use the WorkQueue to improve other data dependent applications

Conclusion
[1] M. Gowanlock and B. Karsin, “GPU Accelerated Self-join for the
Distance Similarity Metric,” Proc. of the 2018 IEEE Intl. Parallel and
Distributed Processing Symposium Workshops, pp. 477–486, 2018.
[2] B. Gallet and M. Gowanlock, “Load Imbalance Mitigation Optimizations
for GPU-Accelerated Similarity Joins”, Proc. of the 2019 IEEE Intl. Parallel
and Distributed Processing Symposium Workshops, 2019

References

The distance similarity self-join finds all pairs of objects that are
within a distance ε from each other. The data-dependent nature of
this application, combined with the Single Instruction Multiple
Threads (SIMT) architecture of the GPU, can lead to severe
workload imbalance between GPU threads, resulting in a loss of
performance due to idle periods. We thus propose to balance the
workload by sorting the points based on their workload, and by
executing the points in a specific order by using a work queue.

Abstract

● GPU’s architecture: 32 threads executed simultaneously (warp)
○ Divergent paths executed sequentially

● Different workloads within a warp
○ Threads may idle for a period of time

● Unused computational power leads to higher execution time
● Reduce workload imbalance to improve performance

○ Both execution time and GPU’s resource utilization

Motivation

Figure 1:
Representation of
the workload
imbalance between
the threads

Solution

Figure 2:
Representation of
the workload
balancing when
sorting the points

● Sort points by their workload, execute from most to least
workload
○ Reduces workload imbalance within a warp (Fig. 2)

● Because of the GPU’s hardware scheduler, cannot ensure
this execution order
○ Points may not be executed from most to least workload

● Use a blocking work queue to force the scheduling of threads
to points

● Threads retrieve the first point not already computed in
non-increasing order of work
○ Within a warp, this yields 32 consecutive points with a very

similar workload

Figure 3:
Representation of
the functionning of
the work queue, the
sorted dataset (D’)
and the workload of
the points (W)

Figure 4: Uniformly distributed dataset, 2M
points in 6 dimensions, and WEE for ε = 8

Figure 5: Exponentially distributed dataset, 2M
points in 6 dimensions, and WEE for ε = 1.2

0%

100%

95.6%

15.2%

71.4%

0%

100%

48.2%

51.3%

WEE: WEE:

