Optimizing GPU-Accelerated Similarity Joins: Addressing Data-Dependent Workloads

Benoît Gallet, Michael Gowanlock

benoit.gallet@nau.edu, michael.gowanlock@nau.edu School of Informatics, Computing and Cyber Systems, Northern Arizona University

Abstract

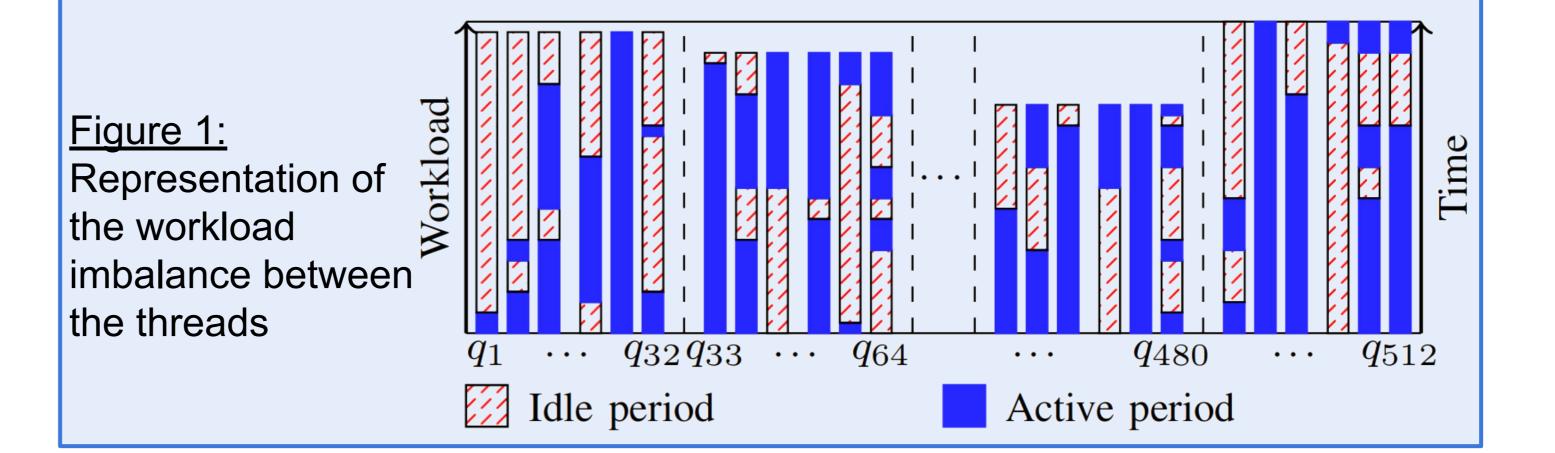
The distance similarity self-join finds all pairs of objects that are within a distance ε from each other. The data-dependent nature of this application, combined with the Single Instruction Multiple Threads (SIMT) architecture of the GPU, can lead to severe workload imbalance between GPU threads, resulting in a loss of performance due to idle periods. We thus propose to balance the workload by sorting the points based on their workload, and by executing the points in a specific order by using a work queue.

Introduction

- For a query point q, find all its neighboring points within a Euclidean distance ε (also called a range query)
- For a dataset D, there are |D| total range queries
- Range queries are independent and memory intensive • Suited to the GPU
- Every range query does not have the same number of distance calculations than the others
 - Different workloads, thus execution time (Fig. 1)
- The workload of a single range query is characterized by the number of distance calculations computed

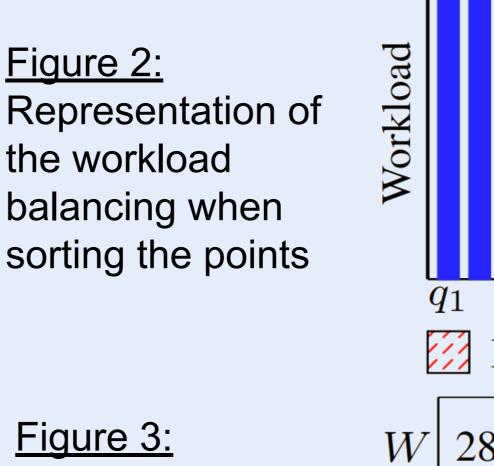
Motivation

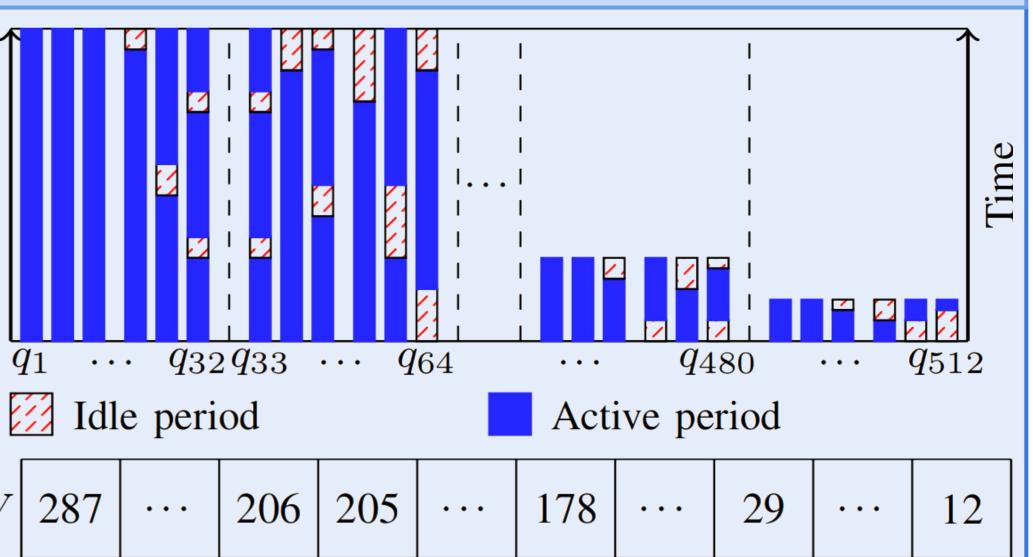
- GPU's architecture: 32 threads executed simultaneously (warp)
 - Divergent paths executed sequentially
- Different workloads within a warp
 - Threads may idle for a period of time
- Unused computational power leads to higher execution time
- Reduce workload imbalance to improve performance
 - Both execution time and GPU's resource utilization



Solution

- Sort points by their workload, execute from most to least workload
 - Reduces workload imbalance within a warp (Fig. 2)
- Because of the GPU's hardware scheduler, cannot ensure this execution order
 - Points may not be executed from most to least workload
- Use a blocking work queue to force the scheduling of threads to points
- Threads retrieve the first point not already computed in





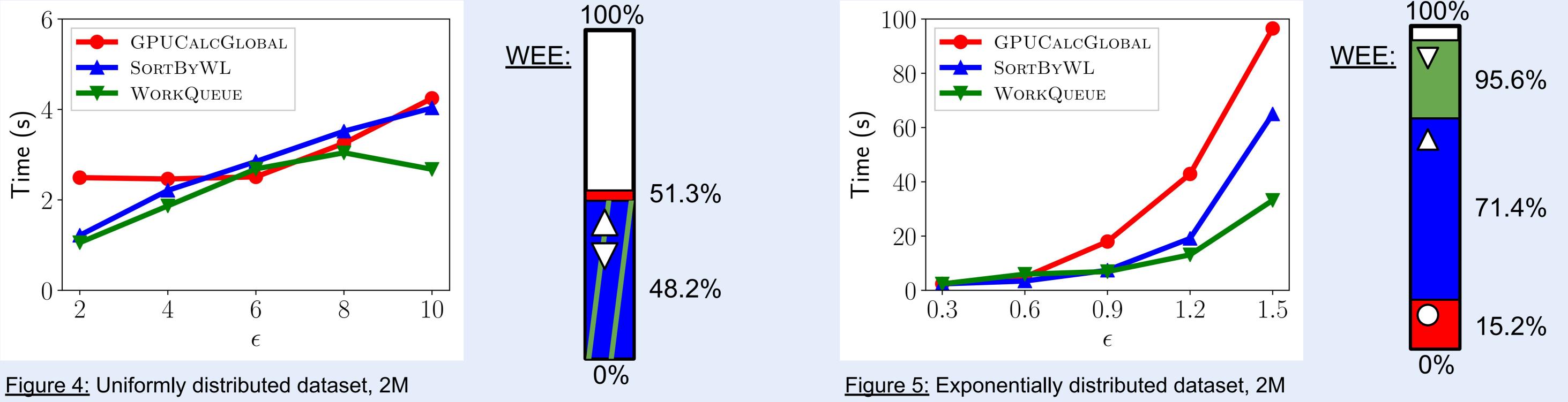
non-increasing order of work

• Within a warp, this yields 32 consecutive points with a very similar workload

Representation of											
the functionning of	Most	ost workload						Least workload			
sorted dataset (D') and the workload of D'	q_{37}	•••	q_{12}	q_{133}	•••	q_{135}	•••	q_{1337}	•••	q_{27}	
the points (W)	32 Exec	2 poin cuted	ts first	32 points Executed second				32 points Executed last			

Results

- Compare GPUCalcGlobal [1], sorting by workload (SortByWL) and our work queue (WorkQueue) [2]
- Focus on the execution time and warp execution efficiency (WEE)
 - Percentage of active threads within a warp: higher is better
- Uniformly distributed datasets have a uniform workload
 - No need to balance the workload between the threads, contrary to exponentially distributed datasets



points in 6 dimensions, and WEE for $\varepsilon = 8$

points in 6 dimensions, and WEE for $\varepsilon = 1.2$

Conclusion

- Warp execution efficiency impacts response time
- 100% warp execution efficiency may indicate a computational bound
 - Cannot exceed 100% of active threads per warp
- Use the WorkQueue to improve other data dependent applications

References

[1] M. Gowanlock and B. Karsin, "GPU Accelerated Self-join for the Distance Similarity Metric," Proc. of the 2018 IEEE Intl. Parallel and Distributed Processing Symposium Workshops, pp. 477–486, 2018. [2] B. Gallet and M. Gowanlock, "Load Imbalance Mitigation Optimizations" for GPU-Accelerated Similarity Joins", Proc. of the 2019 IEEE Intl. Parallel and Distributed Processing Symposium Workshops, 2019