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ABSTRACT

EFFICIENT EUCLIDEAN DISTANCE CALCULATIONS AND DISTANCE

SIMILARITY SEARCHES: AN EXAMINATION OF HETEROGENEOUS CPU, GPU,

AND TENSOR CORE ARCHITECTURES

BENOÎT GALLET

The Euclidean distance is a measure frequently used in numerous applications, including

data-analysis algorithms, to determine the similarity between objects, as a function of the

distance between them. Given a set of objects, performing a distance similarity search con-

sists of finding objects that are considered similar, i.e., finding objects within a threshold

search distance of a given object, where the distance measure often employs the Euclidean

distance formula. Distance similarity searches can be used as a building block for other

algorithms, including the distance similarity join, k-Nearest Neighbors (k-NN), k-Means, or

the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithms.

As such, optimizing the computation of Euclidean distances will improve the performance of

distance similarity searches, and improving distance similarity searches will improve the per-

formance of numerous other algorithms. Consequently, optimizing both Euclidean distance

calculations and distance similarity searches is critical to improve the performance of many

data-analysis algorithms, including the ones mentioned above, in addition to applications in

other domains such as fields that require modeling and simulation.

The literature is rich with methods to improve the performance of Euclidean distance

calculations and distance similarity searches, particularly using Central Processing Units

(CPUs). While multicore CPUs can offer great parallel performance, they are outclassed by

the higher computational throughput of Graphics Processing Units (GPUs). Using GPUs for

these problems is relatively recent and there are, consequently, significantly fewer proposed

work that use the GPU instead of the CPU. However, the design space for GPU algorithms is

large, thus some algorithm designs have been neglected, including those that carefully exploit

GPU resources. Furthermore, while both CPUs and GPUs have been extensively studied
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on their own, very little work has been conducted where both architectures are leveraged

concurrently.

Tensor Cores (TCs) are a recent addition to certain GPU architectures. As an Application-

Specific Integrated Circuit (ASIC), TCs are designed to compute Matrix Multiply-Accumulate

(MMA) operations, at a higher throughput than other general-purpose cores. In the liter-

ature, TCs are primarily used for machine learning and other related fields involving linear

algebra, yielding great performance improvements. Despite their specificity, TCs can be

leveraged for any algorithm where the computation can be expressed using MMA oper-

ations. Nevertheless, leveraging TCs for general-purpose scientific algorithms remains an

open problem.

We propose in this dissertation to optimize the performance of Euclidean distance cal-

culations and more generally distance similarity searches, by examining: (i) GPU resource

utilization; (ii) the joint use of both CPUs and GPUs for computation; (iii) the use of TCs

to compute Euclidean distances; (iv) the joint use of general-purpose GPU cores and TCs

to compute Euclidean distances.
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Chapter 1

Introduction

In recent years, there has been a need to process or analyze large volumes of data using

efficient algorithms. Similarity searches are one such algorithm that is often employed to

process large datasets, and are widely used in various fields such as image [30] and document

similarity [12], or data clustering [19, 20, 32]. More generally, similarity search algorithms

are typically used to find objects in a dataset that are similar to a given query object,

and according to a given metric. The similarity between two objects corresponds to their

computed distance, and two objects are considered similar if their distance is within a certain

threshold, which is defined by the user and may vary depending on the use case. Using

traditional processing techniques, which are typically sequential by default, severely limit

the performance of similarity search algorithms.

Parallel computing consists of processing several tasks or a task on different data at the

same time and is an efficient solution to improve similarity search algorithms performance.

By breaking down their execution into smaller tasks and executing them concurrently on

multiple processing units, whether using Central Processing Units (CPUs) or Graphics Pro-

cessing Units (GPUs), we can significantly improve the performance of similarity search

algorithms, and can process increasingly larger datasets as well. Despite being designed for

graphic applications, GPUs recently emerged as a more efficient solution for parallel pro-

cessing than CPUs, in part thanks to their substantially higher core count and much higher

memory bandwidth. More generally, parallel computing is essential to improve the perfor-
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mance of many algorithms, or to allow the processing of larger datasets while yielding a

practical execution time.

Similarity search algorithms benefit greatly from parallel processing techniques, as their

overall computation often consists of many smaller operations that can be done in parallel,

and that therefore scale well with the increased core counts of GPUs compared to CPUs.

Additionally, as these algorithms typically process large volumes of data, the higher memory

bandwidth of GPUs compared to the system’s main memory accessed by the CPU, also

helps improve the performance of similarity search algorithms. Consequently, we observe

in the literature that GPUs have been gradually more used to implement similarity search

algorithms, and are often more efficient than previously proposed algorithms using CPUs.

Many data analysis algorithms, including similarity search algorithms, use the Euclidean

distance formula to measure the similarity between pairs of objects [12, 19, 20, 21, 24,

32, 46, 57, 82, 91]. The Euclidean distance measures the straight-line distance between

two objects according to their spatial coordinates, and is not constrainted by the number

of data dimensions. When many objects are processed, computing Euclidean distances

can be a major performance bottleneck, which needs to be addressed. Given a dataset

V , computing the similarity between all objects has a time complexity of O(|V |2) [31]. In

the literature, many published works propose to reduce this complexity by reducing the

number of distance calculations computed, particularly by using an indexing data structure.

Such data structures index data, typically based on their spatial coordinates, which allows

for fast data retrieval. More particularly, and depending on the search threshold, indexes

ensure that some points can not be within that threshold of a query point, thus typically

reducing the overall number of distance calculations to compute, and therefore reducing

the overall time complexity of the algorithm. We identify two types of indexing structures,

based on trees [13, 14, 16, 17, 33, 48, 87], and grids [21, 22, 45, 46, 57]. Due to the curse

of dimensionality [15, 50, 51], many of the indexing structures are efficient only in low or

high dimensionality. Furthermore, because these indexing structures are designed for either
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the CPU or the GPU, and because of the differences between CPU and GPU architectures,

algorithms using these structures on the CPU will not perform well on the GPU, and vice

versa.

In the literature, the majority of proposed distance similarity search algorithms, or algo-

rithms employing Euclidean distance calculations, examine the CPU as the target platform.

With the recent introduction of General Purpose Computing on Graphics Processing Units

(GPGPU), GPUs have been increasingly used for a wide range of applications thanks to

their significantly greater throughput than CPUs: GPUs typically have several orders of

magnitude more cores than CPUs, and their onboard global memory bandwidth is also sev-

eral times greater than the main memory (RAM). However, where CPU cores can compute

independently, the Single Instruction Multiple Thread (SIMT) architecture of GPUs im-

poses groups of 32 threads to execute the same instruction at a time. Consequently, some

algorithms may not perform well when executed on the GPU, particularly algorithms with

data dependencies or those with a task-parallel division of work. In the case of Euclidean

distances, computing the distance between two objects is independent of computing the

distance between two other objects. Thus, computing Euclidean distances is a highly par-

allel calculation scaling well with the number of threads/cores used. As such, GPUs with

thousands of cores are excellent architectures for improving the performance of Euclidean

distance calculations, and other algorithms that employ them, including distance similarity

searches.

While CPU architectures have not extensively changed in recent years, each consecutive

generation of GPU is significantly different and much faster than the previous generation.

In particular, the Volta generation of Nvidia GPUs [71] introduced Tensor Cores (TCs).

TCs are an Application-Specific Integrated Circuit (ASIC) designed to exclusively compute

Matrix Multiply-Accumulate operations, at a much higher throughput than general-purpose

CPU or GPU CUDA cores. Given four matrices A,B,C andD, TCs computeD = A×B+C,

with a significantly greater throughput than general-purpose cores.
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Note that the GPU-related research was conducted using Nvidia GPUs and the Nvidia

CUDA API. As such, we use the corresponding terminology throughout this dissertation.

Nevertheless, the GPU concepts we discuss in this dissertation are relevant to other modern

GPUs as well, and only the terminology may differ.

1.1 Motivations

The performance of data-analysis algorithms is directly dependent on the input data

characteristics: the number of objects, their distribution in the data-space, data dimension-

ality, among other factors. To process increasingly larger datasets in a reasonable amount of

time, improving the algorithms is necessary, and the improvements should be able to exploit

newer hardware features and, overall, all computational capabilities of a computer platform.

The literature regarding Euclidean distance calculation and distance similarity searches has

several shortcomings that motivated the work conducted in this dissertation, which we detail

below.

• Many research works focus on using either the CPU or the GPU. While focusing on a

single architecture makes optimizing algorithms relatively easier, this leaves one or the

other architecture underutilized: CPU algorithms do not leverage GPUs by default;

GPU algorithms sporadically need to use the CPU as a host for the GPU, essentially

performing tasks such as transferring data from main memory (RAM) to the GPU’s

global memory, and vice versa. As compute clusters and consumer-grade computers

are increasingly equipped with GPUs [89], algorithms designed for either the CPU or

the GPU would not be able to efficiently leverage all the computational power of such

platforms.

• Parallel CPU and GPU algorithms are notoriously challenging to design and optimize.

Furthermore, because of all the architectural differences between CPUs and GPUs,

efficient optimizations working well on the CPU may not work as well on the GPU,
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and vice versa. In particular, algorithms with irregular workloads can have a negative

impact on the performance, particularly on the GPU because of the SIMT execution

model. Distance similarity searches, when using an indexing structure, are an algorithm

with such irregular workloads: all the objects may not compare to the same number of

objects, where each object may have a different workload. On the SIMT architecture

of the GPU, it might yield lower resource usage, as threads with lower workloads

might wait on threads with a higher workload to finish their assigned work, effectively

reducing the overall parallelism of the algorithm, and thus performance.

• GPU architectures have greatly evolved, and even recent algorithms may not leverage

the full capabilities of recent GPUs, or recent features may not be an obvious choice

when designing an algorithm for the architecture. TCs fall into this category: fields

related to machine learning or more generally to linear algebra extensively use TCs,

with groundbreaking efficiency. On the other hand, very few general scientific applica-

tions have leveraged TCs to improve their performance, leaving a part of the compute

resource unused.

• A CPU algorithm and a GPU algorithm that have the same purpose, e.g., computing

kNN searches, may have different workloads depending on how the algorithms are

implemented, usually to fit the targeted architecture. When targeting both the CPU

and GPU, this workload disparity is likely to make it more difficult to optimally assign

the work to the processors: an input object may have a different workload depending

on if the CPU processes it, or if the GPU does.

1.2 Challenges

Efficiently computing Euclidean distances and distance similarity searches on different

architectures can be challenging. In particular, we identify the following challenges that

must be resolved:
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• The architecture of the CPU and GPU are very different, and an algorithm designed

for the CPU is likely to perform poorly on the GPU, and vice versa. Leveraging both

the CPU and GPU at the same time thus requires careful considerations to achieve

the best performance.

• GPU architectures are greatly evolving, and are becoming heterogeneous: along with

the general-purpose cores, recent GPU architectures are also equipped with cores for

a specific purpose, such as TCs. Because these two types of cores serve a different

purpose, leveraging them both concurrently also requires particular considerations,

similarly to leveraging the CPU and GPU at the same time.

• Algorithms with irregular workloads such as distance similarity searches are more chal-

lenging to optimize than algorithms with regular workloads. Irregular workloads be-

tween GPU threads lower the overall parallelism, and thus performance, of an algo-

rithm.

1.3 Contributions

This dissertation makes the following contributions, aiming at solving the challenges

described above:

• Using an existing state-of-the-art GPU distance similarity search algorithm as a base-

line, we identify a major bottleneck regarding the irregular workloads that we solve

by reordering the way objects are processed and how objects are assigned to threads,

effectively increasing resource usage and performance.

• We combine the previously optimized algorithm and a state-of-the-art parallel CPU

distance similarity search algorithm to propose a heterogeneous CPU-GPU algorithm,

where both architectures are concurrently used and perform similar tasks (i.e., both

the CPU and GPU search an indexing data structure, compute Euclidean distances,
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etc.). This CPU-GPU algorithm was able to achieve similar or better performance

than CPU-only and GPU-only algorithms in most experiments.

• We propose several Euclidean distance calculation algorithms leveraging TCs, which

can then be used in other algorithms such as distance similarity searches. By using

TCs, we achieve better performance than when using general-purpose CPU or GPU

cores.

• While still a work in progress, we investigate leveraging both the general-purpose GPU

cores and TCs. By using both types of cores, we expect to make better use of the

available resources and to improve the performance compared to algorithms using only

one or the other type of core.

Distance similarity searches and, more generally Euclidean distance calculations, are om-

nipresent in many data analysis algorithms, where they are often responsible for producing

the greatest. While most of the literature focuses on optimizing an algorithm for a specific

architecture, this may leave other processors of a different architecture unused in a given

computer platform. Leveraging all available architectures, including CPUs, general-purpose

GPU cores and specific-purpose GPU TCs is essential for improving the overall performance

of distance-centric algorithms, and to make better use of available computational resources.

1.4 Outline

This dissertation is outlined as follows: we introduce in Chapter 2 general background

necessary for the rest of the dissertation. We then present in Chapter 3 through Chapter 6

the different contributions we make. We finally conclude the dissertation in Chapter 7, where

we propose several future research directions as well.
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Chapter 2

Background and Related Work

We give in this chapter important background material relevant to the rest of the disser-

tation. Note that there is substantial overlap with the background sections of subsequent

chapters. Furthermore, because Chapters 3-6 are self-contained published or ready to submit

papers, some notations used in this section may be inconsistent throughout the dissertation,

for which we apologize to the reader.

2.1 Euclidean Distance

Let V be a dataset in d dimensions, where for a point p ∈ V , pi is the ith point in V

where i = 1, . . . , |V |, and pi(j) is the jth coordinate of p where j = 1, . . . , d. Given two

points a, b ∈ V , the Euclidean distance formula calculates the distance between the points a

and b as follows:

dist(a, b) =

√√√√ d∑
j=1

(a(j)− b(j))2. (2.1)

The Euclidean distance function is a fundamental operation in many data analysis algo-

rithms, and is heavily used for distance similarity searches [19, 20, 21, 32, 42, 46, 57, 82].

As such, the algorithms that we optimize and that we propose in this dissertation use this

function (Equation 2.1) as well. Additionally, we use in Chapters 5 and 6 an expanded form

of the Euclidean distance formula:
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dist(a, b) =

√√√√ d∑
j=1

a(j)2 − 2a(j)b(j) + b(j)2 (2.2)

2.2 Distance Similarity Searches

Let V and V ′ be datasets in d dimensions. A distance similarity search consists of, for

a query point q ∈ V , to find all the points ci ∈ V ′, where i = 1, . . . , |V ′| and dist(q, ci) ≤ ϵ,

most commonly using the Euclidean distance function (Equation 2.1) defined above. This

computation can also be referred to as a range query. Finding all pairs of points in V and V ′

that are within ϵ to each other corresponds to computing a distance similarity join (V ⋉ϵV
′),

and where those pairs are stored in a result set R. Note the special case where V and V ′ are

the same datasets, and thus where V ⋊⋉ϵ V , referred to as a distance similarity self-join.

The result of distance similarity searches can be used to optimize the performance of other

algorithms. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

clustering algorithm creates an unspecified number of clusters, where they each have a min-

imum density. This density requires points to have a minimum number of points (minPts)

within a distance ϵ to form a cluster, or to be within ϵ of a point in an already existing cluster.

The DBSCAN algorithm mostly uses Euclidean distances to evaluate if points are within

ϵ, and the overall algorithm can be optimized by first recording all pairs of points that are

within ϵ of each other using a parallel distance similarity search algorithm for example, and

by then executing the clustering algorithms to form the clusters [46]. The k-Nearest Neigh-

bors (k-NN) algorithm is a particular case of distance similarity search, as it only records

the k closest points to each query point. Thus, similarly to the DBSCAN optimization

mentioned before, when recording all pairs of points that are within ϵ, we can record only

the k closest to each query point to compute a k-NN search [42].

Within the literature, we see that the majority of proposed works use a common opti-

mization, which consists of indexing the points before computing distance similarity searches,

using the assumption that certain points are more likely to be similar (i.e., within ϵ) than
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others. This method greatly reduces the overall complexity of distance similarity searches, as

it avoids the computation of the Euclidean distance between points that may not be within

ϵ of each other. The method consists of two steps: search and refine. Given a query point q,

we search the index for candidate points that are likely to be within ϵ from q. The candidate

points are then refined by computing the Euclidean distance between the query point and

each of the candidates. Only those points that are within ϵ are stored in the result set, R.

Depending on the dataset characteristics, query points from the same dataset may have a

greatly varying number of candidate points to refine, and therefore greatly varying workload.

Many different indexes exist with different characteristics, and two major types can be

identified: hierarchical indexes using trees, and non-hierarchical indexes using grids, and

they usually target either low or high dimensional datasets. Indeed, as d increases, the

cost to search an index exponentially increases as well. This is because the volume of the

data space increases exponentially with d, which is known as the curse of dimensionality

problem [15, 50, 51]. Consequently, to achieve good performance, novel methods have been

designed to address this problem [29, 44, 65, 82]. Additionally, indexes are typically designed

for a particular architecture in mind, e.g., either the CPU [13, 14, 16, 17, 21, 33, 48, 57, 87]

or the GPU [22, 29, 42, 44, 45, 46, 65, 92], but rarely both [42, 59, 88].

Note that we discuss distance similarity searches from the literature in greater detail in

the subsequent chapters.

2.3 Task and Data Parallelism

Designing parallel algorithms involves splitting the work between computing resources.

Among the existing methods to split the total work to compute, we identify the two principal

methods as follows:

• Task-parallelism: the algorithm consists of multiple tasks to compute, and each of these

tasks is assigned to either the CPU or GPU architecture. Depending on the nature of
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the task and its workload, it may be more suited to be executed on the CPU or the

GPU. In this case, the architectural differences might be the most important criteria

determining the performance of an algorithm.

• Data-parallelism: the algorithm consists of an overall single task, which should be

executed on several data items. Hence, each piece of data to process is assigned to a

processing unit, a CPU core or a GPU for example. Depending on the corresponding

workload of the data to process, it may be more suited to assign it to the CPU or the

GPU. In this case, the computational throughput of the processors might be the most

important factor to determine the amount of work processors should be assigned.

2.4 CPU Architecture

The CPU is the central component of all modern computers. The performance of CPUs

largely depends on particular architectural features such as:

• The number of cores, which allows the CPU to execute multiple tasks at the same time,

whether it is multiple different tasks or a single task that is parallelized. Because the

CPU cores are independent of each other, the CPU is proficient at both task and data-

parallel approaches. Today, the number of cores CPUs have can range from just a few

to about a hundred. Compute-bound algorithms are typically limited by the number of

CPU cores; therefore, increased parallelism in an algorithm should also increase overall

performance.

• The system’s main memory (RAM), is used to store the data and instructions to pro-

cess. The main memory can be very large, up to several terabytes, but is also relatively

slow and has a high latency, particularly compared to on-chip memory accesses such

as cache memory (detailed below). Memory-bound algorithms are typically limited by

the bandwidth and latency of the main memory, particularly when several cores need

to simultaneously share the resource.
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• The size and the levels of cache, which provide high bandwidth and low latency access

to certain data, typically that are accessed the most. Instructions and data are fetched

from the RAM into the cache for faster accesses, and data are typically flushed out of

cache when not used recently. Common processor architectures have three hierarchical

levels of on-chip cache, L1 to L3, where each level increases the size but also the latency.

L1 and L2 are usually private to a core, while L3 is shared among multiple cores on a

CPU.

• The Instruction-Level Parallelism (ILP) hardware allows a CPU’s thread of execution

to process several instructions at the same time, such as an addition and a multiplica-

tion on independent data elements.

• The Single Instruction Multiple Data (SIMD) paradigm, allows CPU cores to execute

an instruction on vectorized data. Vectorized instructions are usually made through

automatic compiler optimizations or the explicit use of intrinsic CPU functions [55].

Overall, while CPU architectures saw great advancements in the past, nowadays, archi-

tecture changes are very limited and are plateauing, where most changes focus on increasing

the number of cores, larger cache memory, and newer generations of RAM with greater

bandwidth.

2.5 GPU Architecture

The GPU is an accelerator that was originally designed for graphics rendering purposes,

which is nowadays extensively used for scientific computation due to its high theoretical peak

performance. Some of its main features are:

• GPUs typically have several thousands of cores, and are therefore the architecture

of choice for highly parallel algorithms. These general-purpose cores follow the Single

Instruction Multiple Thread (SIMT) paradigm, where the same instruction is executed
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simultaneously on a set of 32 threads, called a warp (which is defined in hardware).

Divergent executions between the threads of a warp are computed sequentially, thus

reducing performance [23, 78, 79]. Furthermore, because all 32 threads must end their

execution at the same time, in the case of an algorithm with irregular workloads and

workload imbalance between the threads of a warp, those with less work will idle,

waiting for the threads with more work to complete their execution. In the case of

Nvidia GPUs, these cores are referred to as CUDA cores, and these cores are grouped

into Streaming Multiprocessors (SMs). In the case of other GPU manufacturers, AMD

for example refers to the cores as Stream Processors, which are grouped into Compute

Units.

• The GPU is equipped with onboard memory, referred to as global memory, and is

off-chip relative to the processor. This memory has a high aggregated maximum band-

width (up to several terabytes per second [76]), which is achievable when threads access

coalesced data but also suffers from high latency. In addition, each SM has its own

on-chip shared memory, which has a much higher bandwidth and lower latency than

global memory. Thus, the shared memory is typically used to manually page frequently

accessed data from the global memory for faster retrievals.

• With many threads and a high latency memory, most of the performance of the GPU

comes from a rapid hardware context switching to hide the memory access latency by

executing threads that have their instructions and data ready to process.

• The overall representation of the threads is as follows: 32 threads are grouped in a warp

(defined in hardware), multiple warps constitute a block, and a block is executed on one

GPU multiprocessor. Hence, the warps in the same block can exchange data through

the on-chip shared memory. Finally, the blocks are grouped into a grid, which thus

contains all the threads, each having their own unique identifier. Note that while the

concepts of blocks and grids are an abstraction, the warps are defined in the hardware

13



of the GPU.

• We consider here the case where the GPU is discrete, having its own dedicated memory.

The CPU (the host) and the GPU (the device) can communicate through one of several

interconnects available, such as the PCIe or NVLink [80]. CPU-GPU communications

are a known bottleneck due to the relatively low bandwidth of the PCIe interconnect.

This issue tends to be alleviated with more recent revisions of this PCIe interconnect,

or with the use of the NVLink technology [62, 80].

Because the GPU is nevertheless only an accelerator, the CPU is still required to perform

some basic yet mandatory tasks. These tasks typically include allocating memory in the

GPU’s global memory, copying data from the main memory to the global memory and vice

versa, invoking GPU kernels, among other minor tasks. Thus, GPU algorithms also utilize

the CPU in several ways. However, we consider that these tasks alone make the CPU

underutilized compared to its overall capabilities, and GPU algorithms are thus not fully

using the compute resources of the system.

2.5.1 GPU Tensor Cores

Contrary to CPU architectures, GPU architectures have rapidly evolved between each

generation. Among the recent features added to GPU architectures, Tensor Cores (TCs)

are one of the most important. TCs are a type of Application-Specific Integrated Circuit

(ASIC), solely designed to compute Matrix Multiply-Accumulate (MMA) operations. Using

four matrices A,B,C and D, TCs can only compute D = A× B + C, and where C and D

may be equal and point to the same memory location. Due to their high specificity, TCs

have a significantly higher computational throughput when computing MMA operations

than CUDA cores.

In the literature, most of the proposed algorithms that use TCs are related to machine

learning, linear algebra, or other closely related fields. However, despite their high specificity
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(only one computation is possible), TCs can be leveraged in any algorithm that uses or can

use MMA operations. While this may require significant algorithm modifications, leveraging

TCs can significantly improve the performance of an algorithm [4, 27, 56, 63, 67].

TCs can be used through different methods, including high-level libraries such as cuBLAS

or CUTLASS [74, 75]. We focus in this dissertation on the low-level Warp Matrix Multiply-

Accumulate (WMMA) API, available through the CUDA API [8, 77, 78]. Using the WMMA

API offers the most control over the code and over how TCs are used and can be integrated

into an already existing kernel contrary to the cuBLAS and CUTLASS functions. However,

the API has several constraints. Typically, the WMMAAPI offers only a limited combination

of compute precisions and matrix sizes, which we give in Table 2.1.

Table 2.1: Available standard floating-point precisions and matrix sizes of matrices A,B,C
and D using the WMMA API [78].

Precision Matrix Size
A, B C, D A B C, D
FP16 FP16/FP32 16× 16 16× 16 16× 16
FP16 FP16/FP32 32× 16 16× 8 32× 8
FP16 FP16/FP32 8× 16 16× 32 8× 32
FP64 FP64 8× 4 4× 8 8× 8

Note that in hardware, each TC computes on a 4×4 matrix. Hence, because the available

matrices are larger than 4 × 4, several TCs may be used to compute an MMA operation

on matrices larger than 4× 4. Additionally, the WMMA API provides a class fragment to

represent the matrices, which are stored across the registers assigned to 32 threads (a warp).

Furthermore, the API yields access to a set of functions to use on the fragments:

• load matrix sync: copies data from a memory starting address to a fragment, and

accepts a stride to use to copy consecutive rows/columns of the fragment.

• store matrix sync: copies data from a fragment to a memory address, also accepting a

stride between consecutive rows/columns.

• fill fragment : fill a fragment with a single specified value.
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• mma sync: computes an MMA operation between several fragments.

All these functions must be called by all threads of a warp (i.e., 32 threads). Furthermore,

while the individual elements of fragments can be individually accessed, the WMMA API

does not specify the order in which the elements are stored in the fragment. Hence, unless

an instruction should be applied to all the elements of the fragment, we can not alter them

independently.

2.6 Comparison of CPU and GPU Architectures

We presented in Sections 2.4 and 2.5 the main features of the CPU and GPU architectures,

respectively, and we summarize in this section the main differences. For this comparison,

we select the model of CPU and GPU that equip the Leonardo supercomputer, as it is the

most efficient supercomputer from the TOP500 list with Nvidia GPUs [89]. The CPUs are

Intel Xeon Platinum 8358 [52], and the GPUs are Nvidia A100 [73].

Table 2.2: Comparison of the Intel Xeon Platinum 8358 CPU [52, 53] and Nvidia A100
GPU [73] architectures and performance, both processors equipping the Leonardo

supercomputer [89].

Feature CPU GPU
Number of cores 32 6912 FP32/INT32, 3456

FP64, 432 TCs
Main/global memory size Up to 6 TB 40/80 GB
Main/global memory band-
width (GB/s)

204.8 1555/2039

Preferred parallelism Task or Data Data
Peak throughput
(TFLOPS)

0.972 [53] 78 FP16, 19.5 FP32, 9.7
FP64, 312 FP16 TCs, 19.5

FP64 TCs

We summarize in Table 2.2 the difference between the Intel Xeon Platinum 8358 CPU [52]

and the Nvidia A100 GPU [73]. We choose these processors as they equip the supercomputer

equipped with Nvidia GPUs with the highest peak throughput from the TOP500 list [89] at

this time. As explained in the previous sections (Sections 2.4 and 2.5), we can see that the
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main characteristics of the CPU and GPU yield to a significantly greater peak throughput

for the GPU than for the CPU, while also having a much higher peak memory bandwidth.

2.7 Heterogeneous Computing

As previously described, computers, and particularly clusters, are increasingly more het-

erogeneous as they are increasingly equipped with CPU(s) and GPU(s) [89]. Hence, het-

erogeneous algorithms leveraging both architectures are essential to maximize performance

and resource utilization. However, there are few reports in the literature of algorithms that

leverage both CPUs and GPUs concurrently, and where both architectures compute a sim-

ilar amount of work relative to their respective performance, such as the workload between

both architectures is relatively balanced. In these proposed works, the CPU is most of the

time alleviating some of the work from the GPU, but remains mostly underutilized [59, 88].

Regardless of the approach to split the work among processors (Section 2.3), a heterogeneous

computing algorithm leveraging a CPU and a GPU is likely to face several issues, including

the following:

• Load-balancing : assign work to the processors so their workload is balanced relative

to their own computational capabilities. In the case where the processors have the

same capabilities, then the workload can be assigned equivalently (e.g., assigning work

to multiple CPU cores). When using heterogeneous architectures, because of the ar-

chitectural differences and vastly different computational throughput, load-balancing

is not as straightforward, and several workload partitioning strategies exist, such as

dynamic partitioning vs. static partitioning.

• Hardware heterogeneity : as described above, CPUs and GPUs have very different ar-

chitectures, and algorithms designed for either architecture are unlikely to perform as

well on the other architecture. Hence, simply designing a GPU program in the same

spirit as a CPU program is most certainly going to perform relatively poorly, and op-
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timizing specific aspects of the algorithm to accommodate both architectures at the

same time can be non-trivial.

Overall, while heterogeneous computing might be more challenging than designing an

algorithm for a single architecture, it is the only way of fully utilizing the computational

resources of a machine, and to attempt to achieve better performance than CPU-only and

GPU-only algorithms.
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Chapter 3

Load Imbalance Mitigation Optimizations for GPU-Accelerated

Similarity Joins

This chapter consists of the peer-reviewed article appearing in the 2019 IEEE High-

Performance Big Data, Deep Learning, and Cloud Computing Workshop (HPBDC) [35], as

part of the International Parallel and Distributed Processing Symposium conference. This

paper won the best paper award of the workshop. Note that while we present the entire

published paper for clarity, part of the contributions were conducted outside the scope of

this dissertation, and are reported in my masters thesis [34]. The most important insights

of the work were conducted as part of this dissertation, and we estimate that over 50% of

the material is unique to the dissertation.

Abstract

The distance similarity self-join is widely used in database applications and is defined as

joining a table on itself using a distance predicate. The similarity self-join is often used in

spatial applications and is a building block of other algorithms, such as those used for data

analysis. In this paper, we propose several new optimizations mitigating load imbalance of a

GPU-accelerated self-join algorithm. The data-dependent nature of the self-join makes the

algorithm potentially unsuitable for the GPU’s architecture, due to variance in workloads

assigned to threads. Consequently, we propose a method that reduces load imbalance and
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subsequent thread divergence between threads executing in a warp by considering the to-

tal workload assigned to each thread, and forcing the GPU’s hardware scheduler to group

threads with similar workloads within the same warp. Also, by leveraging a grid-based in-

dex, we propose a new balanced computational pattern for both reducing the number of

distance calculations and the workload variance between threads. Moreover, we exploit ad-

ditional parallelism by increasing the workload granularity to further improve computational

throughput and workload balance within warps. Our solution achieves a speedup of up to

9.7× and 1.6× on average against another GPU algorithm, and up to 10.7× with an average

of 2.5× against a CPU state-of-the-art parallel algorithm.

3.1 Introduction

Given a dataset, the distance similarity self-join performs a range query around each

point in the dataset to find each point’s neighbors within a distance ϵ. The operation is

used to find objects that share common properties. In databases, the self-join joins a table

on itself, and this operation has been used in various fields as a building block to several

algorithms such as data cleaning [24], near-duplicate detection [91], document similarity [12],

or clustering algorithms [19, 20, 32].

Given a dataset, D, finding all the points within ϵ of a query point q is an expensive

operation. A brute force implementation consisting of two nested loops has a time complexity

of O(|D|2) [31]. Hence, several optimizations have been proposed to improve the performance

of the distance similarity self-join, including indexing schemes, which allow pruning the search

space, thus avoiding comparisons between a point and every other point in the dataset. There

are hierarchical and non-hierarchical indexing schemes. The hierarchical indexing schemes

are typically implemented as trees [14, 16, 17, 48, 58, 59, 60], while non-hierarchical structures

are often implemented as grids [21, 43, 46, 57]. However, as the dimensionality of the dataset

increases, the efficiency of these indexes to prune the search largely diminishes. This effect

is called the curse of dimensionality [15, 50, 51].
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Several databases operations have already been optimized to be able to benefit from the

most recent high-performance computing technologies such as the GPUs [10, 43, 46, 58, 59,

60, 65, 66]. Indeed, their architecture and their high-throughput make them particularly

efficient at processing large volumes of data, and it is no exception for the self-join oper-

ation [43, 46, 65]. Due to their Single Instruction Multiple Threads (SIMT) architecture,

GPUs are very efficient for parallel computations as threads are executed in groups called

warps in CUDA terminology [78] (which we use throughout this paper). Threads in a warp

are executed in parallel and in lock-step. Branching during the execution is resolved by

serializing the execution of threads and their execution pathways, thus causing a loss of

parallel efficiency [78]. The GPU’s architecture presents several challenges concerning the

distance similarity self-join. Among these issues, the total result set size may exceed global

memory capacity, particularly in lower dimensions as shown in [43]. Moreover, as state-of-

the-art CPU algorithms have been extensively studied, the use of a GPU may not yield a

performance advantage over some of the most efficient parallel CPU algorithms.

The similarity self-join is an irregular application where each point in the dataset may

not have the same number of distance calculations, depending on the data distribution.

Because of the GPU’s SIMT architecture, some threads with a higher workload will execute

more work and thus, longer than some other threads within the same warp which will have

idle periods. This issue may lead to intra-warp load imbalance and therefore decrease the

throughput of the self-join. In this paper, we aim at mitigating the load imbalance of the

threads within a warp, as well as between different warps. In particular, this paper makes

the following contributions:

• We increase the workload granularity of each range query by assigning multiple threads

to compute the distance between a query point and its potential neighbors. Having

more threads computing the same query point reduces the workload imbalance within

a warp, as these threads will share the same workload.

• A new cell access pattern that reduces the number of redundant point comparisons.
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This pattern ensures that each thread assigned to a query point compares to the same

number of cells, thus potentially reducing load imbalance relative to previous work.

• We reduce intra-warp load imbalance by packing points with similar workloads, quan-

tified by the number of point comparisons, into the same warp. We order each warp

in non-increasing order using their quantified total amount of work. Then, we force

the GPU’s hardware scheduler to execute these warps in this non-increasing order,

from most to least work. This ensures that the GPU cores are saturated with work by

reducing the time that individual threads within a warp are idle, additionally reducing

load imbalance between GPU cores at the end of the computation.

• As we solve the load balancing issue within individual kernels, we effectively improve

the throughput of the self-join. As GPU’s cores are active for more of the computation

compared to previous work, we make better use of them.

This paper is organized as follows: Section 3.2 outlines background and related work,

Section 3.3 presents the proposed solutions to mitigate load imbalance, Section 3.4 evaluates

the performance of our optimizations, and Section 3.5 concludes the work and discusses

future work directions.

3.2 Background

In this section, we first formalize the problem of the distance similarity self-join, and then

present related work. We also present the work we leverage and optimize.

3.2.1 Problem Statement

Let D be a dataset containing points in n dimensions. For every query point qi, i =

1, . . . , |D|, we denote its coordinates as xj, j = 1, . . . , n. Thus, q1(x1) represents the coor-

dinate in the first dimension of the point q1. The distance similarity self-join will return all

points qi ∈ D that are within the Euclidean distance ϵ of each other.
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Let p, q be two points in D, where p is within ϵ of q if dist(p, q) ≤ ϵ, where dist(p, q) =√∑n
a=1(p(xa)− q(xa))2. We elect to use the Euclidean distance as it is a common metric

in low dimensionality and to facilitate a direct performance comparison with other imple-

mentations of the similarity self-join. All our processing occurs in-memory, and to avoid

exceeding the GPU’s global memory capacity, we use a batching scheme to incrementally

compute the self-join result set across several batches. Moreover, we define a range query as

the computation of the ϵ-neighborhood of a query point.

3.2.2 Related Work

Many studies have presented improvements to self-join performance. A common property

between all these works is the use of the search-and-refine strategy to improve performance.

The search part leverages a data indexing to bound the search space to candidate points

that may be within ϵ of a query point. The refine part consists of computing the distance

between the query point and its candidate points to only consider those within ϵ. We present

an overview of related work regarding indexing, other similarity joins, and range queries.

3.2.2.1 Data Indexing

Based on the distance threshold, indexing allows for retrieving only those points that are

likely to be within ϵ of a query point. Index efficacy is based on data properties. Therefore,

an index designed for low dimensional data is unlikely to be suited for high dimensional data,

and vice versa. Note that all index structures’ efficacy degrades in higher dimensionality,

which is why we focus on the low-dimensionality similarity self-join. Moreover, some of the

indexing methods are suited to the CPU and are not directly applicable to the GPU without

a significant performance loss due to several factors. As stated in Section 3.1, hierarchical

indexes such as trees and non-hierarchical structures such as grids are the two most prominent

solutions for efficient indexing and pruning of the data, thus improving performance. We

detail these two methods as follows.
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Tree-based Indexing: Index-trees are widely used data structures for the similarity

self-join and are particularly suited to those running on a CPU. These indexes are typically

constructed based on the data distribution. The R-Tree [48] uses bounding boxes to partition

data that are stored in the leaves of the tree. However, the use of bounding boxes as in [48]

makes it not well suited to higher dimensions, as data are likely to be assigned to more than

a single disjoint partition. Thus, some of the inner bounding boxes will have duplicate data

due to their overlapping, leading to both an increase in memory usage and traversal time,

as the number of paths traversed increases. Thus, the R*-Tree as proposed in [14] optimizes

the area, the margin and the overlapping of these bounding boxes, while the X-Tree [17]

improves this overlapping in higher dimensions. The k-d tree [16] is a binary tree organizing

points in a k-dimensional space whose nodes are one of the two partitions of the space stored

in their parent node. The k-d tree performs reasonably well in higher dimensions as there is

no data duplication, each point is in a single disjoint partition.

Although the use of trees is not particularly suited to an efficient use on the GPU due

to their many branch instructions and the recursive calls required to traverse them, several

works address these issues to improve their efficiency on the GPU. Authors from [60] convert

the recursive calls of the R-Tree into sequential accesses, while in [58] they optimize the

R-Tree to execute on the GPU by also avoiding recursive calls, as well as improving the

irregular memory accesses. In [59], a hybrid R-Tree using both the CPU and the GPU is

proposed where the tree is traversed on the CPU, which then sends the data contained in the

leaves to the GPU. The CPU performs the tree traversal, which has an irregular execution

pattern, and the GPU performs the filtering of points in the leaf nodes. Hence, this exploits

each architecture’s relative strengths.

Grid-based Indexing: Statically partitioned grid-based indexing consists of partition-

ing the data into a grid of cells with length ϵ in each dimension. This data structure allows

constraining the search of an ϵ-neighborhood of a query point to only its surrounding cells

as proposed for a CPU implementation in [21]. Hence, in n dimensions, each point needs to
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consider up to 3n cells. Super-EGO, as advanced in [57], is considered a state-of-the-art

CPU parallel algorithm and uses a non-materialized grid indexing. In [43], the authors pro-

pose a grid indexing targeting the GPU, that only indexes non-empty cells. By doing so,

the data structure memory footprint remains very low with a O(|D|) space complexity. We

thus compare our optimizations to Super-EGO [57] and this GPU solution [43].

3.2.2.2 Range Queries and Similarity Joins

The Locality-Sensitivity Hashing (LSH) algorithms, such as the E2LSH algorithm [6, 7,

83], provides an estimated result of the nearest-neighbor search and can be used as an esti-

mated distance similarity search [83] method working well in very high dimensions. However,

we do not consider E2LSH in this paper as it targets high-dimensional data and computes

an estimated result, whereas we target lower dimensions and an exact result. The LSS al-

gorithm as proposed in [65] also computes an estimation of the similarity-join by leveraging

the use of a GPU and by using space-filling curves, turning the similarity join problem into a

sort-and-search problem, which are two very efficient operations on the GPU. This technique

creates the curves by sorting on the GPU; then each query point performs an interval search

to find candidate points, efficiently pruning the search.

3.2.3 Overview of Leveraged Previous Work

We address load imbalance in the GPU self-join work of Gowanlock & Karsin [43]. We give

a brief overview of their work, but refer the reader to additional details in [43]. In contrast

to previous work, we focus on several kernel optimizations to mitigate load imbalance.

3.2.3.1 GPU Grid Index

We reuse the ϵ grid indexing for the GPU as proposed in [43]. This method uses several

arrays to efficiently store the data into cells of length ϵ. When performing a range query

around a query point, this technique bounds the search to only adjacent grid cells. Moreover,
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as their method only indexes the non-empty cells, the memory footprint is very low, having

a space complexity of O(|D|), making it well-suited to the GPU’s limited memory capacity.

Moreover, each thread performs the same bounded search by accessing neighboring cells,

thus reducing the divergence of the threads within the same warp. We reuse their index,

which we denote as I.

3.2.3.2 Batching Scheme

Depending on the dataset and the value of ϵ, the self-join may generate a result set size

exceeding the GPU’s global memory capacity. In [43, 46], the authors advance a solution

to prevent buffer overflow. Through a sequence of batches consisting of multiple kernel

executions, they compute the self-join while not exceeding the GPU’s global memory capacity

by transferring partial results back to the host. Thus, with a combination of multiple kernel

invocations, pinned memory, and GPU streams, they avoid all global memory buffer overflow

and are also able to hide data transfer overhead by overlapping them with kernel executions.

This technique samples a percentage of the dataset to estimate the total result set size,

yielding the number of batches that need to be executed. In this work, we sample 1% of the

entire dataset. The number of batches, nbBatches, is determined by the desired maximum

result set size for each kernel execution of size bs. In this paper, we fix this value bs = 108

and we use 3 streams. Thus, when using 3 streams, the total pinned memory buffer size is

3 × 108. We define a batch as one kernel invocation of the self-join which returns a partial

result set, where several batches are needed to compute the entire self-join result. Moreover,

we define Dl as the data points assigned to the batch l, where l = 0, 1, . . . , nbBatches− 1.

Figure 3.1 represents an example of how threads are assigned across multiple batches.

We use for this example a dataset D of 12 points and 3 batches, nbBatches = 3. Therefore,

each batch has 4 points and thus 4 threads, which are strided across the dataset. Hence, the

query point qi ∈ D is computed by the batch l = (i− 1) mod nbBatches.
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D q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

l0 l1 l2 l0 l1 l2 l0 l1 l2 l0 l1 l2

Figure 3.1: Example representation of the thread assignment across multiple batches.
|D| = 12, split across 3 batches numbatch = 3 with 4 points each. l corresponds to the

batch computing the query point qi ∈ D, where i = 1, . . . , 12 and l = (i− 1) mod nbBatch.

3.2.3.3 GPU Kernel

The GPUCalcGlobal kernel, as advanced by Gowanlock & Karsin in [43], is the

foundation of several of our optimizations. This kernel computes the ϵ-neighborhood of each

point in a dataset D, and where each query point in D is computed by a single thread on

the GPU. Thus, |D| threads are used. This kernel is given in Algorithm 1, and is a slightly

modified version from [43] to use an index I instead of defining each index component

described in [43]. The kernel first retrieves the thread’s global id (determined by the block’s

id, the block’s size and the thread id within its block), then returns if the thread’s global id

is larger than the size of the batch, as it uses one thread per query point (lines 2 and 3). On

line 5, the thread gets its point corresponding to its global id, as well as the neighboring cells

on line 6. Then, for each neighboring cell that was found (line 7), we retrieve the list of points

contained in the cell (line 8). Afterward, for each candidate point from the neighboring cell

(line 9), we compute the distance between this candidate point and the query point (line 10).

If the candidate point is within ϵ (line 11), then we add the pair of both points to the result

set (line 12). Finally, when a query point has completed its distance calculations, the kernel

returns (line 13).

3.2.3.4 Unidirectional Comparison (Unicomp)

Gowanlock & Karsin [43] have advanced a cell access pattern designed to eliminate any

duplicate calculations between the points for datasets in any dimension. As the Euclidean

distance is a symmetric function (dist(p, q) = dist(q, p)), they can add both pairs of points

to the result set, with only one distance calculation. This cell access pattern, although pre-
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Algorithm 1 GPUCalcGlobal Kernel (GPU) from [43]

1: procedure GPUCalcGlobal(Dl, I, ϵ)
2: gid ← getGlobalId()
3: if gid ≥ |Dl| then return

4: resultSet ← ∅
5: point ← Dl[gid]
6: adjCells ← getNeighboringCells(gid)
7: for cell ∈ adjCells do
8: pointsArr ← getPoints(cell)
9: for candidatePoint ∈ pointsArr do
10: result ← calcDistance(point, candidatePoint, ϵ)
11: if result ̸= ∅ then
12: atomic: gpuResultSet ← gpuResultSet ∪ result

13: return

senting improved response time in most of their experimental evaluations, seems to present

an uneven workload balance between threads. For example, in two dimensions, a point may

compare with points in up to eight adjacent cells, whereas some points may not compare

to any adjacent cell. The implementation of this Unicomp cell access pattern is given in

two dimensions in Algorithm 2, as described in [43]. Unicomp relies on the odd multidi-

mensional coordinates of the cells to establish an access pattern. It takes as input the query

point point, Ca its multidimensional coordinates, filteredRngs the range of the non-empty

cells in each dimension, and B the array of non-empty cells. If the first coordinate of a cell

is odd (line 2), then this cell is a part of the pattern. The algorithm iterates over the first

dimension (line 3), and if the explored cell does not have the same first index as the origin

cell (line 4), then the linear id of the neighboring cell is calculated (line 5). If this linear id

corresponds to a non-empty cell (line 6), the origin point is compared to the points of the

neighboring cell (line 7). Lines 8 to 14 are used to iterate over the second dimension. As

this example is for two dimensions indexing, an additional loop is needed for each additional

dimension. The comments “Green arrows” and “Red arrows” (respectively lines 2 and 8)

refer to the arrows represented in Figure 3.2.

Figure 3.2 represents the cell access pattern of Unicomp in two dimensions. The arrows
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Algorithm 2 The Unicomp cell access pattern in 2 dimensions (GPU) from [43]

1: procedure Unicomp2D(point, Ca, filteredRngs,B)
2: if Ca.x is odd then ▷ Green arrows
3: for x ∈ filteredRngs[1] do
4: if x ̸= Ca.x then
5: linearID ← getLinearCoord(x, Ca.y)
6: if linearID ∈ B then
7: ComparePoints(point, linearID)

8: if Ca.y is odd then ▷ Red arrows
9: for x ∈ filteredRngs[1] do
10: for y ∈ filteredRngs[2] do
11: if y ̸= Ca.y then
12: linearID ← getLinearCoord(x, y)
13: if linearID ∈ B then
14: ComparePoints(point, linearID)

15: return

represent the neighboring cells to compare to, while the numbers in the cells quantify the

number of neighboring cells that are compared.

0 1 2 3 4

0

1

2

3

4

y x

0 2 0 2 0

4 8 6 8 4

0 2 0 2 0

4 8 6 8 4

0 2 0 2 0

Figure 3.2: Unicomp cell access pattern in two
dimensions. The numbers represent the number of

neighboring cells the origin cell is going to compare, and
the arrows indicate these neighboring cells. While green
arrows indicate an odd x index, red arrows are for an

odd y index.

3.3 Mitigating Load Imbalance

The SIMT architecture of the GPU makes it well-suited for highly data-parallel applica-

tions. Threads are executed in groups of 32 called warps [78]. Due to hardware limitations

(e.g., the number of available registers), only a limited number of warps can be executed

concurrently on the GPU. In the case of the distance similarity self-join, the workload is
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dependent on the data distribution, therefore potentially disparate within threads of the

same warp. For example, in a real world dataset, some points will have few neighbors, and

some will have many neighbors, potentially spanning several orders of magnitude. In this

situation where threads of the same warp have both points from a dense region and points

from a sparse region, some of these threads will be idle for a longer amount of time than

others. While the threads computing the points from a dense region of the dataset are still

active, this prevents the execution of a new warp.

Figure 3.3 is an example representation of the possible workload imbalance we might face

within a warp when using the originalGPUCalcGlobal kernel described in Section 3.2.3.3.

Due to intra-warp workload imbalance, some of the threads will be idle while some others

will be computing, thus reducing the GPU’s resources usage efficiency.
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Idle period Active period

q1 q32. . .

Warp 1

q33 q64. . .

Warp 2

. . .

q480. . . q512. . .

Warp 16

Figure 3.3: Example representation of the workload across a dataset, with q1 to q32 query
points in the first warp, q33 to q64 query points in the second warp, and q481 to q512 in the
last warp, assuming |D| = 512. This represents the potential workload imbalance of the

original GPUCalcGlobal kernel.

3.3.1 Increasing the Granularity of each Range Query

The GPU kernel advanced by Gowanlock & Karsin [43] uses a single GPU thread per

query point. Thus, a single thread is computing every distance calculation between its

point and all the neighboring points. Depending on the properties of the data, some query

points may have many distance calculations to compute, and therefore large amounts of
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work. Consequently, if one thread is assigned to compute all of the distance calculations,

then at the end of a kernel execution, some of the GPU cores will be idle. Therefore, we

can increase the granularity of the filtering task by assigning multiple threads to each query

point for computing the distances. This reduces the amount of idle resources at the end of

the computation.

An optimization is to use multiple threads per query point, so each thread is computing

a fraction of the distance calculations of its assigned query point. This will reduce the

workload of each thread, and thus reduce the time needed to find the neighbors of the query

point. Moreover, by assigning the same workload to each thread of a query point, and as the

number of thread within a warp is fixed, using this optimization will reduce the intra-warp

load imbalance. However, increasing the total number of threads implies a larger number of

warps to schedule. We define k as the number of threads assigned to a single query point.

Figure 3.4 represents how we assign threads to the candidate points ci of a query point qj.

In the present case, we use as an example a query point q0 with a neighboring cell containing

eight points: c0 to c7, and k = 2. Figure 3.4 (a) represents how all candidate points are

assigned to the single thread as in the GPUCalcGlobal kernel, while Figure 3.4 (b)

represents the candidate points being assigned to the two different threads. For descriptive

purpose, we assume k evenly divides the number of candidate points.

q0 c0 c1 c2 c3 c4 c5 c6 c7

tid0

(a)

q0 c0 c1 c2 c3 c4 c5 c6 c7

tid0 tid1

(b)

Figure 3.4: (a) Original assignment of a thread to candidate points, as in [43], (b)
Assignment of threads to candidate points when increasing the distance calculation
granularity, with k = 2 (even case). q0 is a query point with eight candidate points

({c0,. . . ,c7}). tidi designates the local thread id of the query point, where i = 0, . . . , k − 1.

31



3.3.2 Cell Access Pattern: Linear ID Unidirectional Comparison

We propose Linear ID Unidirectional Comparison (Lid-Unicomp) as an optimization

to the Unicomp cell access pattern advanced in [43]. While Unicomp relies on extensive

conditional statements to determine whether points of a cell need to compare to neighboring

cells, Lid-Unicomp reuses the fact that with the grid indexing we use, non-empty cells

have a unique linear id computed from the cell’s coordinates in n dimensions. The principle

of this new cell access pattern is thus to compute the distance with the points from every

neighboring cell that has a higher linear id than the origin cell. The cell access pattern of this

method is represented in Figure 3.5. As we observe if we compare Figure 3.2 to Figure 3.5,

when using the Lid-Unicomp pattern, every inner cell will compare to the same number

of neighboring cells. Depending on the data distribution, this might greatly improve the

workload balance over Unicomp because it has some cells comparing to every neighboring

cell, and some cells comparing to none.
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3 4 4 2
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(b)

Figure 3.5: Overview of the Lid-Unicomp pattern in 2-D. The numbers represent the
number of neighboring cells the origin cell is going to compare to, and the arrows indicate

these neighboring cells. (a) represents the cell access pattern on its own in 2-D, (b)
represents its application on a 2-D grid.

Algorithm 3 gives the implementation of the Lid-Unicomp cell access pattern. For each

neighboring cell (line 3), if the linear id of the neighboring cell is greater than the linear id of

the origin cell (line 5), then following the Lid-Unicomp cell access pattern, this cell needs

to be evaluated (line 6).
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In comparison with the Unicomp cell access pattern (Section 3.2.3.4), the implementa-

tion of the Lid-Unicomp pattern is more straightforward as it relies on a linear id calculation

and a single condition, whereas Unicomp relies on an extensive combination of loops and

conditions. An advantage of Unicomp is that it stops searching as soon as an iterated mul-

tidimensional coordinate is even (Algorithm 2, lines 2 and 8), while Lid-Unicomp checks

the linear id of all the non-empty adjacent cells. Consequently, Unicomp does not need

to iterate over all adjacent cells in comparison to Lid-Unicomp. Thus, Unicomp may

outperform Lid-Unicomp, depending on several data-dependent factors.

Algorithm 3 Lid-Unicomp cell access pattern implementation (GPU)

1: procedure LidUnicomp(q, originCell, ϵ)
2: originId ← linearId(originCell)
3: for c ∈ getNeighborCells(originCell) do
4: neighborId ← linearId(c)
5: if originId < neighborId then
6: evaluateNeighborCell(q, c)

3.3.3 Local and Global Load Balancing: Sorting by Workload

Consider two threads t0 and t1, where t0 is assigned a query point in a sparse region

(q0 in Figure 3.6), and t1 is assigned a query point in a dense region (q1 in Figure 3.6). t0

will perform 14 distance calculations, and t1 will perform 45 distance calculations. If these

threads are within the same warp, t1 will have much more work than t0, and t0 will be idle

for a significant amount of time as it waits for t1.

To reduce the amount of time that threads are idle, a solution is to sort the points by

their workload (number of point comparisons), such that each warp be assigned threads with

similar workloads in comparison to an unbalanced workload as in Figure 3.3. This sorting

is achieved by computing the number of distance calculations of each non-empty cell, i.e.,

retrieving their number of neighbors, and assigning points from the cell with the greatest

workload at the beginning of a new array denoted as D′. Furthermore, as a consequence of

the batching scheme (Section 3.2.3.2), the data points assigned to each batch Dl have a similar
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Figure 3.6: Illustration of the load imbalance between query points and therefore between
threads, where q0 and q1 are two query points and t0 and t1 two threads processing the

query points q0 and q1 respectively.

total workload due to accessing the data in a strided manner (Figure 3.1). SortByWL is

applied to each batch D′
l and not D′; therefore warps will not be strictly assigned points

from most workload to least work in the scope of the entire dataset. However, this ensures

that each batch does not overflow the result set buffer.

3.3.4 Forcing the Warp Execution Order using a Work Queue

SortByWL does not entirely obviate load imbalance as threads within the same warp

still have different workloads due to the stride of the threads across the dataset as presented

in Section 3.2.3.2. Moreover, the hardware scheduler may not execute the warps from most

workload to least work, as the scheduler still has control over the execution order of warps.

To obviate these issues, we propose using a priority queue. While previous work imple-

menting a queue on the GPU exists [90], they use a distributed queue with dynamic load

balancing where threads can retrieve or give work to other threads. Moreover, they use their

threads for the entire computation duration, making it unsuitable for our work due to our

batching scheme. Therefore, we do not use the queue from [90] and extend our SortByWL

optimization using a queue that is persistent across all kernel invocations. Thus, complemen-

tary to SortByWL which outputs a sorted array of the points, we use a global counter to

34



indicate the equivalent of the head of a queue. Each thread increments this counter through

an atomic operation that assigns data points to threads. By using this optimization, we

expect our workload to be nearly identical between the threads of the same warp, as the

example represented in Figure 3.7, where the idle periods of the threads are significantly

reduced in comparison to Figure 3.3.
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Figure 3.7: Representation of balancing the workload between the threads within the same
warp. We use for this example a dataset D = 512.

Figure 3.8 represents the functioning of our WorkQueue optimization, where D′ is

our dataset sorted by workload and W indicates the total workload of a query point. The

workload is quantified as the number of distance calculations a query point will perform to

refine its candidate set.

W 287 . . . 206 205 . . . 178 . . . 29 . . . 12

Most workload Least workload

D′ q37 . . . q12

32 points
Executed first

q133 . . . q135

32 points

Executed second

. . . q1337 . . . q27

32 points
Executed last

Figure 3.8: Representation of the points’ execution order when using the WorkQueue
optimization. D′ is the sorted dataset, and W gives the workload of each query point. The
first 32 points with the most workload will be executed at the beginning within the same
warp, while the last 32 points, with the least workload, will be executed at the very end.

Unlike SortByWL, we consider the entire dataset D′ (as sorted by workload) when ex-
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ecuting batches, and do not employ adding points to Dl across batches in a strided manner.

This ensures that each warp has the smallest possible variance in workloads (point com-

parisons). However, this leads to large variance in result set sizes across batches, which the

strided Dl batches were designed to avoid. Consequently, in the WorkQueue optimization,

we slightly modify the batching scheme (Section 3.2.3.2), and instead of sampling the entire

dataset to estimate the total result set size, we sample the first 1% of D′ (without striding),

which yields a much larger estimated total result set size. This ensures that our first batch

does not overflow the result set buffer; however, we execute more batches than when using

GPUCalcGlobal or SortByWL.

Finally, when we use the WorkQueue in combination with a k > 1, we use cooperative

groups introduced with CUDA 9.0 [49]. We thus create groups of size k where only the

first thread increments the global counter and then shuffles the returned result to the other

threads of the cooperative group.

3.4 Experimental Evaluation

3.4.1 Datasets

To evaluate our proposed solutions, we select several datasets presenting different char-

acteristics such as the dimensionality and size. We consider datasets synthetically generated

with a uniform, and an exponential distribution with λ = 40, each composed of two million

points between two and six dimensions. We use these both distributions as they present

opposite workloads, and therefore to outline the impact of our optimizations. For the real

world datasets, we use the SW- datasets [69] with 1.86M and 5.16M points, both in two

and three dimensions representing the latitude and longitude of the objects in two dimen-

sions, including the total number of electrons in the ionosphere as the third dimension.

Moreover, we select 50 million points from the Gaia catalog [2] in two dimensions. For

the synthetic datasets, we denote Expo- as exponentially distributed datasets and Unif- as
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uniformly distributed datasets. The summary of these datasets is given in Table 3.1. We

omit the three, four and five-dimensional data of our synthetic datasets for the intermediate

plots (Figures 3.9, 3.10 and 3.11), as two and six dimensions bound the performance.

Table 3.1: Summary of the different datasets used for the experimental evaluation. |D|
denotes the number of points and n the dimensionality.

Dataset |D| n Dataset |D| n Dataset |D| n
Unif2D2M 2M 2 Expo2D2M 2M 2 SW2DA 1.86M 2
Unif3D2M 2M 3 Expo3D2M 2M 3 SW2DB 5.16M 2
Unif4D2M 2M 4 Expo4D2M 2M 4 SW3DA 1.86M 3
Unif5D2M 2M 5 Expo5D2M 2M 5 SW3DB 5.16M 3
Unif6D2M 2M 6 Expo6D2M 2M 6 Gaia 50M 2

3.4.2 Methodology

We use a platform composed of 2×Intel E5-2620v4@2.10 GHz for a total of 16 cores,

coupled with 128 GiB of RAM and an Nvidia Quadro P100 (16 GiB of HBM2 global memory).

The GPU code is written in CUDA, while the C/C++ host code is compiled with the GNU

compiler with the O3 flag. The response times do not include the index construction time

because we do not optimize index construction in the implementations that we compare to.

All other components of the algorithm are included in the response time.

In all GPU experiments, we use 256 threads per block, and each data point is represented

as a 64-bit floating point. The parallel CPU Super-EGO experiments include the time to

EGO-sort and join, and use 32-bit floating points and run using 16 threads across 16 physical

cores, yielding the best configuration on our platform. Table 3.2 outlines the optimizations

and notation used in the experimental evaluation.

We average the response times over three trials, while we profile on only three batches

as each batch has nearly identical performance characteristics. Although we retrieve several

different metrics through the Nvidia Profiler [70], we choose only to report the warp execution

efficiency in this paper, as it is the most relevant metric among those we have collected

regarding the performance of our optimizations.
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Table 3.2: Optimizations and notation used throughout the evaluation.

Notation Description
GPUCalcGlobal Original GPU kernel [43] we compare to.
Unicomp Original cell access pattern [43] we compare to.
Super-EGO State-of-the-art CPU parallel algorithm [57] that we compare to.
Lid-Unicomp Cell access pattern advanced in Section 3.3.2.
SortByWL Sorting by workload optimization (Section 3.3.3).
WorkQueue Work-queue optimization (Section 3.3.4).
k Number of thread per query point (Section 3.3.1).

3.4.3 Results

Impact of the New Cell Access Pattern: Here, we evaluate the response time

of the Lid-Unicomp cell access pattern optimization (Section 3.3.2) in several scenarios

and compare it to the response time of the GPUCalcGlobal and Unicomp kernels,

the two solutions we aim to improve. Figure 3.9 plots the response time vs. ϵ of the

GPUCalcGlobal kernel, and the Unicomp and Lid-Unicomp cell access patterns on

our uniformly and exponentially distributed datasets, in two and six dimensions. We observe

thatUnicomp has a lower response time thanGPUCalcGlobal, excepting the Expo2D2M

dataset when ϵ > 0.12 (Figure 3.9 (a)). Moreover, our solution, Lid-Unicomp, improves the

performance of the self-join in most cases, except on the Unif6D2M dataset (Figure 3.9 (d)).

To understand these results, we profile the execution of these three configurations, on the

Expo2D2M, Expo6D2M, Unif2D2M, and Unif6D2M with ϵ = 0.2, 1.2, 1.0, 8.0, respectively.

We report the results in Table 3.3. The warp execution efficiency is the average percentage

of active threads in each executed warp. We choose this metric as having a high warp

execution efficiency means that only a few threads are idle during the execution of each

warp. The warp execution efficiency between Unicomp and Lid-Unicomp is correlated to

the response time. In most cases, as the warp execution efficiency is higher for Lid-Unicomp

than Unicomp, the response time is lower, with an exception for the Unif6D2M dataset

(Figure 3.9 (d)). Regarding the GPUCalcGlobal kernel, despite a higher warp execution

efficiency than the Unicomp or Lid-Unicomp optimizations, its response time is higher.
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Figure 3.9: Response times of the Lid-Unicomp cell access pattern, versus the
GPUCalcGlobal kernel and the Unicomp cell access pattern on our synthetic datasets.

The legend in (a) is used across all subfigures, and we set k = 1.

This is because both cell access patterns reduce the number of distance calculations by a

factor of roughly two, thus improving the response time. Thus, the proposed Lid-Unicomp

optimization may be more efficient than the previous Unicomp cell access pattern due to

its more evenly distributed work across threads. Moreover, the low warp execution efficiency

on the exponentially distributed datasets may reflect intra-warp workload imbalance.

Table 3.3: Warp execution efficiency (WEE) of the GPUCalcGlobal kernel as well as
the Unicomp and Lid-Unicomp cell access patterns over our synthetic datasets and for

specific values of ϵ. The time corresponds to that in Figure 3.9.

GPUCalcGlobal Unicomp Lid-Unicomp
Dataset ϵ WEE(%) Time(s) WEE(%) Time(s) WEE(%) Time(s)

Expo2D2M 0.2 26.5 55.5 13.2 60.9 18.3 40.4
Expo6D2M 1.2 15.2 42.9 7.8 31.6 10.0 25.5
Unif2D2M 1.0 75.4 5.7 48.94 4.5 69.1 4.6
Unif6D2M 8.0 51.3 3.3 19.25 2.1 40.9 2.4
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Impact of Assigning Multiple Threads to Each Query Point: We now focus on

the performance of increasing the thread granularity, specifically by using eight threads per

point (k = 8). We compare this optimization to the GPUCalcGlobal kernel, which uses

only one thread (k = 1), and use the same datasets as for the Lid-Unicomp performance

evaluation. Having k > 1 reduces the workload of each thread, by reducing the number

of distance calculations each of them has to compute. Moreover, this also reduces the

workload variance within a warp, as the threads computing the same query point will share

the same total workload. Figure 3.10 plots the response time of the GPUCalcGlobal

kernel when k = 1 and when k = 8 on our synthetic datasets. While the Expo2D2M dataset

(Figure 3.10 (a)) greatly benefits from the increased granularity when ϵ ≥ 0.12, the response

time is not impacted on the Expo6D2M dataset (Figure 3.10 (b)) and performs even worse

when ϵ ≤ 0.9. Regarding the uniformly distributed datasets, while Unif2D2M presents a

lower response time when having k = 8 and ϵ ≥ 0.4 (Figure 3.10 (c)), theGPUCalcGlobal

kernel with k = 1 performs better on the Unif2D2M dataset (Figure 3.10 (d)). Therefore,

having a low workload as it is the case for lower values of ϵ seems not to be suited to an

increase of the workload granularity, although it does not especially degrade performance.

The exception is on the Unif6D2M dataset, which performs better when k = 1 for every ϵ

values.

Table 3.4 shows the warp execution efficiency and the response time of the GPUCal-

cGlobal kernel when k = 1 and k = 8. We observe that having more threads greatly in-

creases the warp execution efficiency, particularly for the exponentially distributed datasets.

This observation is reflected in the response time, which is lower for our selected values of ϵ.

However, although the warp execution efficiency is always higher when k = 8, the response

time of this configuration is higher on the Unif6D2M dataset than for k = 1. We leave

investigating this behavior for future work.

Impact of Reordering the Points by Workload and Forcing Warp Execution

Order: We evaluate the performance of our SortByWL and WorkQueue optimiza-
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Figure 3.10: Response time of the increase of the granularity when k = 8 versus k = 1 for
the GPUCalcGlobal kernel on our synthetic datasets. The legend in (a) is used across

all subfigures.

Table 3.4: Warp execution efficiency (WEE) of the GPUCalcGlobal with k = 1 and
when k = 8 on synthetic datasets and for specific values of ϵ. The time corresponds to that

in Figure 3.10.

GPUCalcGlobal GPUCalcGlobal, k = 8
Dataset ϵ WEE (%) Time (s) WEE (%) Time (s)

Expo2D2M 0.2 26.5 55.5 40.8 33.6
Expo6D2M 1.2 15.2 42.9 39.27 42.2
Unif2D2M 1.0 75.4 5.7 80.3 4.4
Unif6D2M 8.0 51.3 3.3 60.9 6.2

tions, compared to GPUCalcGlobal. Figure 3.11 plots the response time vs. ϵ of the

GPUCalcGlobal kernel, and our SortByWL and WorkQueue optimizations on our

uniformly and exponentially distributed datasets, in two and six dimensions. Observing the

exponentially distributed datasets in two and six dimensions (Figures 3.11 (a)-(b)), we see

an improvement in the response time, particularly for higher values of ϵ. For smaller values
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of ϵ, the workload variance between points is reduced, thus decreasing the impact of packing

the points based on their workload. Moreover, even without controlling the execution work-

flow when using the SortByWL optimization, it performs better than GPUCalcGlobal

in every case on the exponentially distributed datasets. Nevertheless, the WorkQueue

thus seems to be very effective, especially on datasets with significant variance of work-

load between points, as expected. However, sorting the points based on their workload

does not present any significant gain when datasets are uniformly distributed as every point

have a similar workload, unlike exponentially distributed datasets. We observe this on

Figures 3.11 (c)-(d)) where neither SortByWL or WorkQueue significantly outperform

GPUCalcGlobal.
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Figure 3.11: Response time of the SortByWL and WorkQueue optimizations against
the GPUCalcGlobal kernel on our synthetic datasets. The legend in (a) is used across

all subfigures, and we set k = 1.

In Table 3.5, we observe that the warp execution efficiency is much higher when using

WorkQueue. Moreover, an increase of the warp execution efficiency results in a decrease of
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the response time, excepting the Unif2D2M dataset. The WorkQueue presents both the

highest warp execution efficiency and the lowest response time on our selected configurations.

Therefore, our strategy of packing warps with similar workloads and forcing the hardware

scheduler to execute warps in order clearly improves performance.

Table 3.5: Warp execution efficiency (WEE) of the GPUCalcGlobal kernel, as well as
the SortByWL and WorkQueue optimizations on our synthetic datasets and for

specific values of ϵ. The time corresponds to that in Figure 3.11.

GPUCalcGlobal SortByWL WorkQueue
Dataset ϵ WEE(%) Time(s) WEE(%) Time(s) WEE(%) Time(s)

Expo2D2M 0.2 26.5 55.5 74.6 48.7 83.2 35.6
Expo6D2M 1.2 15.2 42.9 71.4 19.1 95.6 13.1
Unif2D2M 1.0 75.4 5.7 75.4 5.9 83.1 5.6
Unif6D2M 8.0 51.3 3.3 48.2 3.5 48.4 3.0

Combination of Approaches on Real World Datasets: Figure 3.12 plots the re-

sponse time vs. ϵ using a combination of our optimizations, including WorkQueue with

Lid-Unicomp and k = 8. This combination of optimizations outperforms GPUCalc-

Global and Super-EGO across nearly all experimental scenarios. In particular, our op-

timizations are the most effective on the largest workloads (large datasets and ϵ). The

performance on the real world datasets is limited to n = 3 dimensions. Thus, the perfor-

mance of our optimizations typically converge across the datasets because the workloads are

low at n ≤ 3 dimensions, but we will show that on higher dimensionality (Figure 3.13), the

combination of all optimizations will yield larger performance gains (e.g., the Expo6D2M

dataset, Figure 3.11 (b)).

Table 3.6 shows the warp execution efficiency and the total response time for selected

values of ϵ from Figure 3.12. All of our solutions present a better warp execution efficiency

and overall response time than GPUCalcGlobal, which indicates that warp execution

efficiency is a good metric for assessing load imbalance. Due to the high warp execution

efficiency observed across all of our optimizations in Table 3.6, we believe that further opti-

mizations to the GPUCalcGlobal kernel are not likely to lead to significant performance
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Figure 3.12: Response time vs. ϵ on real world datasets of the WorkQueue optimization,
the WorkQueue combined with the Lid-Unicomp pattern, the WorkQueue with
k = 8, and both combined to the WorkQueue compared to the GPUCalcGlobal
kernel and the Super-EGO CPU parallel algorithm. The legend in the subfigure (a) is

used across all subfigures.

gains. However, new algorithmic designs may improve performance.

3.5 Discussion and Conclusion

The self-join has data-dependent performance behavior and irregular instructions that

make the problem challenging to solve efficiently on the GPU. Depending on the data dis-

tribution, the self-join leads to load imbalance within each warp, which limits the GPU’s

throughput. Consequently, we have advanced several optimizations that address load im-

balance. We propose a cell access pattern that avoids duplicate computation. In contrast

to previous work, this allows each point in the dataset to be compared to the same number

of adjacent cells. We increase the granularity of each range query by assigning each query
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Table 3.6: Warp execution efficiency (WEE) of the GPUCalcGlobal, the
WorkQueue, and the WorkQueue combined with Lid-Unicomp and k = 8 on our real
world datasets and for specific values of ϵ. The time corresponds to that in Figure 3.12.

GPUCalcGlobal
WorkQueue,
Lid-Unicomp

WorkQueue, k = 8
Lid-Unicomp

Dataset ϵ WEE(%) Time(s) WEE(%) Time(s) WEE(%) Time(s)
SW2DA 1.2 55.2 15.1 89.1 13.0 80.7 12.5
SW2DB 0.4 54.2 13.8 83.0 13.0 79.7 12.6
SW3DA 2.4 33.7 56.8 93.4 25.2 83.2 21.6
SW3DB 0.8 40.8 14.9 87.1 12.1 82.5 11.7
Gaia 0.04 64.1 37.1 80.3 27.1 78.3 26.7

point multiple threads for performing the distance calculations. This reduces the number

of varying workloads within each warp. We propose packing warps with threads assigned

similar workloads to reduce the load imbalance within each warp. Lastly, we ensure that the

GPU’s hardware scheduler executes warps in non-increasing order of each warp’s assigned

work. This reduces inter-warp load imbalance, which ensures that the warps finish their

execution at similar times, at the end of the kernel execution.

Figure 3.13 summarizes the performance of our WorkQueue, Lid-Unicomp and k = 8

optimizations combined on all datasets. From the figure, we find that using the optimizations

outlined in this paper, we are able to significantly improve the performance over (a) a parallel

CPU implementation, and (b) previous GPU self-join work. We achieve speedups up to

10.7× over Super-EGO and 9.7× over GPUCalcGlobal, with an overage of 2.5× and

1.6× respectively. This work demonstrates that reducing intra-warp workload imbalance

can significantly improve performance, and thus has implications for other algorithms with

data-dependent performance characteristics.

Future work directions are outlined as follows. We will apply our optimizations to other

applications, especially the WorkQueue, which could be adapted to any self-join indexing

structure, contingent upon being able to quantify the workload. We will investigate dynam-

ically grouping batches of queries together when using the work queue such that each batch

yields similar result set sizes. Additionally, we will carry out a more extensive performance
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Figure 3.13: Speedup of the WorkQueue combined to Lid-Unicomp and k = 8
optimization against the Super-EGO parallel algorithm (a), and over the

GPUCalcGlobal kernel (b), on several datasets. ϵ values are plotted on a log scale to
observe all data points.

comparison between the proposed cell access pattern and the one proposed by our previous

work.
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Chapter 4

Heterogeneous CPU-GPU Epsilon Grid Joins: Static and

Dynamic Work Partitioning Strategies

This chapter consists of the peer-reviewed article appearing in the proceedings of the

Proceedings of the 25th International Conference on Database Systems for Advanced Appli-

cations (DASFAA) [36], which was further extended and published in the Data Science and

Engineering Journal [37].

Abstract

Given two datasets (or tables) A and B and a search distance ϵ, the distance similarity

join, denoted as A⋉ϵB, finds the pairs of points (pa, pb), where pa ∈ A and pb ∈ B, and such

that the distance between pa and pb is ≤ ϵ. If A = B, then the similarity join is equivalent

to a similarity self-join, denoted as A ⋊⋉ϵ A. We propose in this paper Heterogeneous Ep-

silon Grid Joins (HEGJoin), a heterogeneous CPU-GPU distance similarity join algorithm.

Efficiently partitioning the work between the CPU and the GPU is a challenge. Indeed, the

work partitioning strategy needs to consider the different characteristics and computational

throughput of the processors (CPU and GPU), as well as the data-dependent nature of the

similarity join that accounts in the overall execution time (e.g., the number of queries, their

distribution, the dimensionality, etc.). In addition to HEGJoin, we design in this paper a

dynamic and two static work partitioning strategies. We also propose a performance model
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for each static partitioning strategy to perform the distribution of the work between the

processors. We evaluate the performance of all three partitioning methods by considering

the execution time and the load imbalance between the CPU and GPU as performance met-

rics. HEGJoin achieves a speedup of up to 5.46× (3.97×) over the GPU-only (CPU-only)

algorithms on our first test platform, and up to 1.97× (12.07×) on our second test platform

over the GPU-only (CPU-only) algorithms.

4.1 Introduction

Consider two input datasets A and B, and a distance threshold ϵ. A distance similarity

search finds the pairs of points (pa, pb), pa ∈ A and pb ∈ B, such that the distance between

these two points is ≤ ϵ. While any distance function can be used, in the literature, the

Euclidean distance is typically employed [20, 21, 22, 35, 57, 65]. These similarity searches

are typically computed as a semi-join operation (A⋉ϵ B), where A is a set or table of query

points and B a set or table of entries in an index. The particular case where A = B is a

self-join (and thus A ⋊⋉ϵ A). For simplicity, we examine in this paper the self-join problem.

However, we do not explore optimizations exclusive to the self-join. Thus, our optimizations

apply to the semi-join case as well. For an input dataset, D, the brute-force self-join solution

has a time complexity of O(|D|2). This complexity decreases when a data indexing method

is used to prune the search space. Hence, using an index and the search-and-refine strategy,

for each query point in D, the search of the index generates a set of candidate points that are

likely to be within ϵ of the query point, while the refine step computes the distance between

a query point and its candidate points to produce the final result set.

The indexing methods used for the search-and-refine strategy are often designed for either

low [21, 22, 35, 57] or high dimensionality [64, 65, 83]. Due to the curse of dimensional-

ity [15, 57], when dimensionality increases, index searches become more exhaustive, and the

complexity of the algorithm gradually degrades into a brute-force search. Hence, indexes

suited for low dimensional data are likely not to be as efficient when used on higher di-
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mensional data (and vice versa). The curse of dimensionality is thus among the reasons

why we only focus here on the low-dimensionality case, rather than any dimensionality: we

elect to create an efficient algorithm for the low-dimensional case, rather than a less efficient

algorithm that addresses all dimensionalities. Furthermore, while low-dimensional searches

are often memory-bound, high-dimensional searches are usually compute-bound, as the cost

of a distance calculation increases with dimensionality. In this paper, we focus on low-

dimensional searches. Hence, HEGJoin may saturate memory bandwidth, thus potentially

negatively impacting performance and parallel scalability of the algorithm, as compared to

when fewer processors contend for memory bandwidth.

Graphics Processing Units (GPUs) have been increasingly used for general computational

problems, and particularly for improving similarity join performance [22, 65], and with spe-

cific data indexing methods that are suited to the GPU’s particular Single Instruction Multi-

ple Threads (SIMT) architecture [9, 58, 59, 60, 92]. The proliferation of GPUs is particularly

explained by their increased computational throughput and higher memory bandwidth com-

pared to CPUs. However, despite these attractive features, their use in combination with the

CPU to perform some part of the computation to further improve database query through-

put, such as the distance similarity join, remains underexplored. Thus, we propose in this

paper HEGJoin, a heterogeneous CPU-GPU distance similarity search algorithm. Hence,

in addition to the CPU performing GPU-supporting tasks (launching kernels, transferring

data, etc.), we explicitly use the CPU to compute a fraction of the total number of query

points.

As discussed above, the literature concerning heterogeneous CPU-GPU database appli-

cations is relatively scarce. Thus, we propose to leverage both the CPU and GPU, and

design an efficient algorithm to compute distance similarity searches. There are two major

CPU-GPU similarity search algorithm designs, described as follows:

• Task parallelism: Assign the CPU and GPU particular tasks to compute, such as

searching on the CPU and then refining on the GPU [59].
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• Data parallelism: Split the data to compute, and perform both the search and

refine steps on each architecture independently, using different algorithms suited to

the strengths of each architecture [41].

In the literature, heterogeneous CPU-GPU similarity search and related range query

algorithms focus on a task-parallel approach [59, 88]. The task-parallel approaches model

the problem as a two [59] or three stage pipeline [88], where the CPU is assigned one task,

such as searching an index, and the GPU is assigned the task of refining the candidate

points [59]. Consequently, as with any pipeline, the throughput is dependent on the slowest

stage. Therefore, the drawback of the task-parallel approach is that it can leave resources

(CPU or GPU) underutilized. In this paper, we focus on the data-parallel approach, which

allows us to exploit all available computational resources in the system to maximize query

throughput. Since we concurrently use the CPU and GPU, we then need to efficiently

partition the work among our processors, i.e., assign to each processor a number of queries

to compute so the algorithm achieves good load balancing and thus good performance. To

the best of our knowledge, HEGJoin is the first data-parallel heterogeneous and concurrent

CPU-GPU distance similarity join algorithm.

As our solution is designed for data-parallelism, our work partitioning strategies partition

queries from the input dataset. Because HEGJoin is a heterogeneous CPU-GPU algorithm,

this is particularly challenging as we need to efficiently distribute the work to accommodate

each processor’s architectural characteristics. The data-parallel work partitioning can be

achieved by different methods: dynamically [41] where the work is assigned to the proces-

sors on-demand, or statically [47, 93], where each processor has a fixed amount of work to

compute. Statically partitioning the work is challenging, as we need to determine the amount

of work to be assigned to the CPU and GPU such that it minimizes load imbalance between

the processors. The workload has data-dependent performance characteristics that depend

on the number of points, their dimensionality, and their distribution (e.g., underdense vs.

overdense regions). Consider partitioning the data using a dynamic approach. In this case,
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Figure 4.1: Representation of how we combine Super-EGO and LBJoin by using a single
work queue to form HEGJoin. When using the static partitioning strategy, the CPU and
the GPU would access the work queue only once (at the beginning of the algorithm to

retrieve their assigned queries). When using the dynamic partitioning scheme, the CPU and
the GPU would iteratively query the work queue for queries to compute until it is empty.

partitioning involves having the pieces of work assigned to the CPU or the GPU, where

there is a trade-off between small work units assigned to each processor to achieve good

load balancing, and large work units so that the processors reach peak throughput. On the

other hand, static partitioning requires accurately estimating the total workload, which is

particularly challenging given the data-dependent nature of the work. In contrast, on other

problems that have deterministic workloads, the workload can be accurately estimated, and

static work partitioning is straightforward [81].

To enable static partitioning, we propose two performance models that quantify the

workload based on different metrics that enable the two static partitioning strategies to

assign work to the CPU and GPU. Additionally, we propose a dynamic partitioning strategy

that is oblivious to the workload. We compare these partitioning strategies to assess their

relative strengths and weaknesses, to understand how the characteristics of the workload

may affect the performance of HEGJoin, and to ultimately be able to select the partitioning

strategy that yields the best performance.

Our algorithm leverages two previously proposed independent works that were shown to

be highly efficient: the GPU algorithm (LBJoin) by Gallet and Gowanlock [35] and the

CPU algorithm (Super-EGO) by Kalashnikov [57]. However, although we mention above
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that HEGJoin employs a data-parallel approach, as we leverage two different algorithms

(LBJoin and Super-EGO) and a work queue, our algorithm also has task-parallel charac-

teristics. While the output of LBJoin and Super-EGO is identical, the algorithm executed

by the CPU is inherently different from the algorithm executed by the GPU. Therefore,

HEGJoin uses a mixed parallelism model (a combination of data- and task-parallelism).

Figure 4.1 illustrates how LBJoin and Super-EGO work together through the use of a

single shared work queue.

By combining the LBJoin and Super-EGO algorithms and using our work partitioning

methods, we achieve better performance on most experimental scenarios than CPU-only

or GPU-only approaches. Note that, since Super-EGO and LBJoin respective indexing

methods are more efficient in lower dimensions, and as most of the related literature works

rarely focus on both low and high dimensionality, we choose to focus on low dimensional

distance similarity joins. Hence, this paper makes the following contributions:

1. We combine state-of-the-art algorithms for the CPU and GPU to propose a new algo-

rithm, HEGJoin, and which is, to the best of our knowledge, the first data-parallel

heterogeneous and concurrent CPU-GPU distance similarity join algorithm.

2. We propose an efficient shared double-ended work queue (deque) to assign query points

either to the CPU or to the GPU. Furthermore, we exploit the GPU’s high compu-

tational throughput by assigning it query points with the highest workload (located

at the beginning of the deque), while we assign the query points with the smallest

workload to the CPU.

3. We develop three different workload partitioning strategies. The dynamic work parti-

tioning strategy uses the shared deque to assign work to either the CPU or GPU. In

this case, there is no fixed boundary on the work that can be assigned to the CPU

or the GPU, as it is assigned to processors on-demand. Furthermore, we advance two

static work partitioning methods: based on the number of query points, and based on
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the total number of candidate points that need to be refined per query point. As with

both static strategies the CPU and GPU have a fixed number of queries to compute,

if the GPU completes its work before the CPU, it must wait for the CPU to complete

its work (and vice versa).

4. We optimize Super-EGO to further improve the performance of HEGJoin. We

denote this optimized version of Super-EGO as New-Super-EGO.

5. We evaluate the performance of HEGJoin using seven real-world and ten exponen-

tially distributed synthetic datasets, and using two platforms. We achieve speedups

up to 5.46× and 3.97× over the GPU-only and CPU-only algorithms on the first test

platform, and speedups up to 1.97× and 12.07× on the second test platform. Fur-

thermore, we achieve an average load imbalance ratio as low as 0.14 when using the

dynamic work partitioning strategy on the first platform.

The paper is organized as follows. We begin in Section 4.2 by surveying the literature and

presenting an overview of GPU architecture. We then present in Section 4.3 the leveraged

algorithms, and we describe HEGJoin and its main features in Section 4.4. We evaluate

the performance of HEGJoin and our partitioning methods in Section 4.5, and we finally

conclude this paper in Section 4.6.

4.2 Background

4.2.1 Problem Statement

Let D be a dataset in d dimensions. Each point in D is denoted as qi, where i = 1, ..., |D|.

We denote the jth coordinate of qi ∈ D as qi(j), where j = 1, ..., d. Thus, given a distance

threshold ϵ, we define the distance similarity search of a query point q as finding all points

in D that are within this distance ϵ to q. We also define a candidate point c ∈ D as a

point whose distance to q is evaluated. Similarly to related work, we use the Euclidean
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distance. Therefore, the similarity join finds pairs of points (q ∈ D, c ∈ D), such that

dist(q, c) ≤ ϵ, where dist(q, c) =
√∑d

j=1(q(j)− c(j))2. All processing occurs in-memory.

While we consider the case where the result set size may exceed the GPU’s global memory

capacity, we do not consider the case where the result set size may exceed the platform’s

main memory capacity.

4.2.2 GPU Architecture

We present material related to GPU architecture and use CUDA terminology through-

out the paper. Modern GPUs are equipped with a few thousand cores. The global memory

bandwidth of the GPU is over an order of magnitude higher than the main memory band-

width of the CPU (up to 1555 GB/s for the Tesla A100 [73] GPU). However, the GPU’s

global memory has limited capacity, and the potential for parallelism is dependent on con-

trol flow, as threads are executed in groups of 32 (called warps) in lock-step. Also, different

workloads assigned to threads within the same warp induce idle periods, where some threads

are idle while others are computing. The PCI interconnect between the CPU and the GPU

is a bottleneck (PCIe-v3 has 32 GiB/s bi-directional bandwidth). For more information on

the CUDA programming model and the GPU architecture, we refer the reader to general

references on the topic [78, 79].

4.2.3 Related Work

In this section, we outline relevant work regarding the distance similarity join and work

partitioning methods between heterogeneous architectures.

4.2.3.1 Data Indexing

Since the similarity join is frequently used as a building block within other algorithms,

the literature regarding the optimization of the similarity join is extensive. However, the vast

majority of existing literature aims at improving performance using either the CPU or the
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GPU, and rarely both. Hence, literature regarding heterogeneous CPU-GPU similarity join

optimizations remains relatively scarce. The search-and-refine strategy (Section 4.1) largely

relies on the use of data indexing methods, that we describe as follows.

Indexing data structures are used to prune the search space of an indexed input dataset

to reduce the number of candidates that may be within ϵ of each query point. Given a

query point q and a distance threshold ϵ, indexes find the candidate points that are likely

to be within a distance ϵ of q. Also, the majority of the indexes are designed for a specific

use, whether they are for low or high dimensional data, for the CPU, for the GPU, or

both architectures. We identify different indexing methods, including those designed for the

CPU [13, 14, 16, 21, 25, 48, 57, 87], the GPU [9, 45, 58], or both architectures [41, 59, 88].

As our algorithm focuses on the low dimensionality distance similarity search, we focus

on presenting indexing methods that are designed for lower dimensions. Since indexes are

an essential component of distance similarity searches, identifying the best index for each

architecture is critical to achieve good performance, especially when using two different

architectures. Furthermore, although our heterogeneous algorithm leverages two previously

proposed works [35, 57] that both use a grid index for the CPU and the GPU, we discuss in

the following sections several other indexing methods based on trees.

CPU Indexing: In the literature, the majority of indexes designed for the CPU used to

index multi-dimensional data are based on trees. The following trees have been designed for

range queries and can, therefore, be used for distance similarity searches. The kD-Tree [16]

is a binary tree that indexes k-dimensional data by subsequently splitting the search space

in two, following an alternation of the k dimensions (in two dimensions for example, split

following the x-axis, then the y-axis, then the x-axis, etc.). Hence, each node stores the

coordinates of its search space, and splits it between its two child nodes. The Quad Tree [33]

is very similar to the kD-Tree, as it consists of a tree whose nodes have four children, and

as the search space is subsequently divided into four sub-spaces (instead of two for the kD-

Tree). The nodes of the R-Tree [48] consist of bounding boxes to store multi-dimensional
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objects, which are then stored in the leaf nodes of the tree. In addition to these tree indexes,

grids such as the Epsilon Grid Order (EGO) [21, 57] have also been designed for distance

similarity joins. We discuss this EGO index that we leverage in Section 4.3.2.

GPU Indexing: Similar to CPU indexes, index-trees have been optimized to address the

GPU’s SIMT architecture. Kim et al. [58] optimized the R-Tree on the GPU by replacing

the recursive accesses inherent to traversing the tree that are not suited to the GPU. They

replaced these accesses by sequential accesses, particularly by allowing the search of the tree

to jump from a node to its next sibling. Awad et al. [9] improve the efficiency of the B-Tree

by using nodes the size of the GPU’s cache access size, and by avoiding recursive calls during

the tree traversal as well. Furthermore, they assign multiple queries to a warp, with all the

threads of the same warp that cooperate to compute one query at a time, thus reducing intra-

warp thread divergence. We leverage the GPU grid index proposed by Gowanlock and Karsin

[45] and that is designed for distance similarity joins, which we present in Section 4.3.1.1.

CPU-GPU Indexing: Kim and Nam [59] propose an R-Tree designed for range queries

that uses task parallelism. The CPU searches the internal nodes of the tree and, when

reaching the leaf nodes, sends this partial result to the GPU. The GPU then traverses these

leaf nodes, which are stored as a contiguous array in GPU’s main memory so the memory

accesses are likely coalesced, and refines the candidate objects. In contrast, Gowanlock [41]

elects to use two indexes for data parallelism to compute k-NN searches. The CPU uses

a kD-Tree [16], while the GPU uses a grid [45]. Hence, both indexes are suited to their

respective architecture.

4.2.3.2 Workload Partitioning

As described above, efficiently partitioning the work of parallel algorithms is critical,

whether it is based on the tasks to execute (task-parallelism), or the data to compute (data-

parallelism). Because the solution we propose in this paper requires data-parallelism, we

describe in this section contributions in the literature that propose partitioning schemes for
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data-parallel algorithms as well.

Efficient work partitioning is usually difficult to achieve since several parameters need to

be considered: typically the processors’ relative performance (e.g., computational throughput

or memory bandwidth), and if the algorithm’s workload can be easily determined (usually

the case for non data-dependent workloads). On problems exposing a data-dependent work-

load, such as the distance similarity join or sparse matrix multiplications [68] for example,

determining the workload is more challenging than for problems without data-dependent

workloads (e.g., regular matrix-matrix multiplications [81]).

Dynamic partitioning solutions [41] present advantages to keeping the processors busy

(as they are assigned work until none is available), and do not require knowing the relative

performance of the processors beforehand, making it agnostic to platform hardware charac-

teristics. Furthermore, while dynamic work partitioning does not require knowledge about

the workload to be functional, it may still be beneficial to determine an overall workload in

order to assign work to the most suitable processor.

On the other hand, static partitioning methods [47, 93], if not arbitrary (i.e., a static

partitioning of work not based on information related to the processors or the algorithm),

requires having accurate knowledge about the relative performance of the processors as well

as the workload to achieve good load balancing between the processors. Furthermore, most

static partitioning methods are based on models [47, 93], which are made for a specific

algorithm and platform. Hence, their solution may be inefficient when used for a different

algorithm (which would require a new model) or on a different platform (which would require

adapting the model for this new platform).

Gowanlock [41] proposes a dynamic partitioning scheme to compute k-NN searches. Using

a work queue, they continuously assign query points to the CPU and the GPU until all the

work has been computed. As the overall workload of the algorithm is determined beforehand,

they are able to assign more query points and with the highest workloads to the GPU, and

the rest to the CPU. The load balancing of the computation is thus managed by the work
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queue and the dynamic work assignment to the different processors.

Grewe and O’Boyle [47] advance a general static partitioning scheme of applications.

Their solution relies on different metrics such as the number of computing operations and

their precision, the number of memory operations, the presence of loops, etc., extracted

from the code before the computation. Hence, they determine an overall workload for the

algorithm and, if the computation is considered to be efficient if executed on both the CPU

and GPU, then they estimate a work partitioning using the input data size, and a model

they previously developed using the same application and for several fixed static partitioning

fractions. Yasuhito Ogata et al. [93] propose a model to statically assign the work of a Fast

Fourier Transform (FFT) to the CPU and the GPU. Their solution creates sub-problems of

the FFT and, following their model, assign these sub-problems to the most suitable processor.

This model is based on parameters such as previously recorded performance, CPU-GPU

data transfer rate, memory management on the GPU, matrix transposition performance,

and several other factors.

The dynamic work partitioning strategy we propose in this paper, while similar to the

one proposed by Gowanlock [41], should be more efficient as the way we determine our work-

load is more accurate than their solution. Our static work partitioning methods, similarly to

other static partitionings [47, 93], also propose a performance model (for each of our static

partitioning strategy). However, we outline the importance of determining the overall work-

load to efficiently partition, by proposing an intuitive solution having rather little knowledge

about the workload, and a second method with an accurate knowledge of the workload. The

load imbalance between the CPU and GPU would show such importance. For comparative

purposes, we expect that our solution with accurate workload knowledge will yield better

load balancing than the solution with less knowledge of the workload.
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4.3 Leveraged Work

In this section, we present the leveraged works used to design HEGJoin. We use LB-

Join [35] for the GPU and Super-EGO [57] for the CPU, which are two state-of-the-art

algorithms for their respective platforms, which are publicly available. For greater detail, we

encourage the reader to refer to the original papers of Super-EGO [57] and LBJoin [35].

Furthermore, we acknowledge that a CPU distance similarity join algorithm has been pro-

posed in the literature by Perdacher et al. [82] that outperforms Super-EGO at high di-

mensions. However, their algorithm has comparable performance to Super-EGO in low

dimensionality. Therefore, we use Super-EGO and not Perdacher et al. [82] to create

HEGJoin, as it is better suited to our low dimensional case.

4.3.1 GPU Algorithm: LBJoin

The GPU component of HEGJoin is based on the GPU kernel proposed by Gallet and

Gowanlock [35]. This kernel also uses the grid index and the batching scheme by Gowanlock

and Karsin [45]. This work is the best distance similarity join algorithm for low dimensions

that uses the GPU (there are similar GPU algorithms but they are designed for range queries,

see Section 4.2).

4.3.1.1 Grid Indexing

The grid index presented by Gowanlock and Karsin [45] allows the query points to only

search for candidate points within its 3d adjacent cells (and the query points’ own cell),

where d is the data dimensionality. This grid is stored in several arrays in the GPU’s global

memory: (i) the first array represents only the non-empty cells to minimize memory usage,

(ii) the second array stores the cells’ linear id and a minimum and maximum indices of the

points, (iii) the third array corresponds to the position of the points in the dataset and

is pointed to by the second array. Candidate points are retrieved by searching the index

in global memory, which yields a set of candidates points in the dataset, D. Furthermore,
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the threads within the same warp access adjacent cells in the same lock-step fashion, thus

avoiding thread divergence. Also, note that we modify their work and now construct the

index directly on the GPU, which is much faster than constructing it on the CPU as in the

original work.

4.3.1.2 Batching Scheme

Computing the ϵ-neighborhood of many query points may yield a very large result set

and exceed the GPU’s global memory capacity. Therefore, in Gowanlock and Karsin [45],

the total execution is split into multiple batches, such that the result set does not exceed

global memory capacity.

The number of batches that are executed, nb, are defined by an estimate of the total

result set size, ne, and a buffer of size ns, which is stored on the GPU. The authors use a

lightweight kernel to compute ne, based on a sample of D. Thus, they compute nb = ne/ns.
1

The buffer size, ns, can be selected such that the GPU’s global memory capacity is not

exceeded. The number of query points, nGPU
p , processed per batch (a fraction of |D|) are

defined by the number of batches as follows: nGPU
p = |D|/nb. Hence, a smaller number of

batches will yield a larger number of queries processed per batch.

The total result set is simply the union of the results from each batch. Let R denote

the total result set, where R =
nb⋃
l=1

rl, where rl is the result set of a batch, and where

l = 1, 2, . . . , nb.

The batches are executed in three CUDA streams, allowing the overlap of GPU compu-

tation and CPU-GPU communication, and other host-side tasks (e.g., memory copies into

and out of buffers), which is beneficial for performance.

1In this section, for clarity, and without the loss of generality, we describe the batching scheme assuming
all values divide evenly.
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4.3.1.3 Sort by Workload and Work Queue

The sorting strategy proposed by Gallet and Gowanlock [35] sorts the query points by

non-increasing workload. The workload of a query point is determined by the sum of can-

didate points in its own cell and its 3d adjacent cells in the grid index. Hence, the grid

index is used to retrieve the adjacent cells, and to find the number of points in each of them.

This results in a list of query points sorted from most to least workload, which is then used

in the work queue to assign work to the GPU’s threads. The consequence of sorting by

workload and of using this work queue is that threads within the same warp will compute

query points with a similar workload, thereby reducing intra-warp load imbalance. This re-

duction in load imbalance, compared to their GPU reference implementation [35], therefore

reduces the overall number of periods where some threads of the warp are idle and some are

computing. This yields an overall better response time than when not sorting by workload.

This queue is stored on the GPU as an array, and a variable is used to indicate the head of

the queue. In this paper, we store this queue on the CPU’s main memory to be able to share

the work between the CPU and the GPU components of HEGJoin. Furthermore, the sum

of the individual workloads of each query point corresponds to the total workload. Since

this sorting by workload strategy uses the grid index to compute the workload, it allows for

estimating the workload for any input dimensionality and data distribution.

4.3.1.4 GPU Kernel

The GPU kernel [35] makes use of a grid index, the batching scheme, as well as the

sorting by workload strategy and the work queue presented above. Moreover, we configure

the kernel [35] to use a single GPU thread to process each query point (|D| threads in

total). Thus, each thread first retrieves a query point from the work queue using an atomic

operation. Then, using the grid index, the threads search for their non-empty neighboring

cells corresponding to their query point, and iterate over the found cells. Finally, for each

candidate point within these cells, the algorithm computes the distance to the query point
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and if this distance is ≤ ϵ, then the key/value pair made of the query point’s id and the

candidate point’s id is added to the result buffer r of the batch.

4.3.2 CPU Algorithm: Super-EGO

Similarly to our GPU component, the CPU component of HEGJoin is based on the

efficient distance similarity join algorithm, Super-EGO, proposed by Kalashnikov [57]. We

detail its main features as follows.

4.3.2.1 Dimension Reordering

The principle of this technique is to first compute a histogram of the average distance

between the points of the dataset and for each dimension. A dimension with a high average

distance between the points means that points are more spread across the search space,

and therefore fewer points will join. The goal is to quickly increase the cumulative distance

between two points so it reaches ϵ with fewer distance calculations, allowing the algorithm

to short-circuit the distance calculation and continue computing the next point.

4.3.2.2 EGO Sort

This sorting strategy sorts the points based on their coordinates in each dimension,

divided by ϵ. This puts spatially close points close to each other in memory, and serves as

an index to find candidate points when joining two sets of points. This sort was originally

introduced by Böhm et al. [21].

4.3.2.3 Join Method

The Super-EGO algorithm takes a set of query points and computes each point’s result

set as follows. First, in main memory, Super-EGO recursively creates new partitions, until

these partitions reach a given size. Next, the join is made by comparing the set of query

points to this set of generated partitions of the input dataset, where the partitions that
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are recursively generated are sets of points spatially co-located to the set of query points.

Then, since the points are sorted based on their coordinates and the dimensions have been

reordered, two partitions are compared only if their first point is within ϵ from each other.

If they are not, then subsequent points will not join either, and the join of the two partitions

is aborted.

4.3.2.4 Parallel Algorithm

Super-EGO also adds parallelism to the original EGO algorithm, using pthreads

and a producer-consumer scheme to balance the workload between threads. When a new

partition is recursively created, if the size of the queue is less than the number of threads

(i.e., some threads have no work), the newly created partitions are added to the work queue

to be shared among the threads. This ensures that no threads are left without work to

compute.

4.4 Heterogeneous CPU-GPU Algorithm: HEGJoin

In this section, we present the major components of our heterogeneous CPU-GPU algo-

rithm, HEGJoin, the different techniques we propose to partition the workload between the

CPU and the GPU, as well as improvements made to the work we leverage.

4.4.1 Shared Work Queue

As mentioned in Section 4.3.1, we leverage the work queue stored on the GPU that was

proposed by Gallet and Gowanlock [35], which efficiently balances the workload between

GPU threads. However, to use the work queue for the CPU and the GPU components

of HEGJoin, we must relocate it to the host/CPU to use it with our CPU algorithm

component. Because the GPU has a higher computational throughput than the CPU, we

assign the query points with the most work to the GPU, and those with the least work to

the CPU. Similarly to the shared work queue proposed by Gowanlock [41] for the CPU-GPU
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Figure 4.2: Representation of our deque as an array. The numbers qi are the query points
id, the triangles are the starting position of each index, and the arrows above it indicate

the indices progression in the deque.

k-NN algorithm, the query points need to be sorted based on their workload, as detailed in

Section 4.3.1.3. However, while query points’ workload in Gowanlock [41] is characterized

by the number of points within each query point’s cell, we define here the workload as

the number of candidate points within all adjacent cells. Our sorting strategy is more

representative of the workload than in Gowanlock [41], as it yields the exact number of

candidates that must be filtered for each query point.

Using this queue with the CPU and the GPU requires modifying the original work

queue [35] to be a double ended-queue (deque), as well as defining a deque index for each

architecture. Since the query points are sorted by workload, we set the GPU’s deque index

to the beginning of the deque (greatest workload), and to the end of the deque for the CPU’s

index (smallest workload). Therefore, the GPU’s workload is configured to decrease while

the CPU’s workload increases, as their respective index progresses in the deque. Also, note

that while np for the CPU (nCPU
p ) is fixed, np for the GPU (nGPU

p ) varies based on the

dataset characteristics and on ϵ (Section 4.3.1.2).

As described in Section 4.3, HEGJoin uses two different sorts: sorting by workload

(Section 4.3.1.3) and Super-EGO’s EGO-sort (Section 4.3.2.2). However, as these two

strategies sort following different criteria, it is not possible to first sort by workload then

to EGO-sort (and vice versa), as the first sort would be overwritten by the second sort.

We thus create a mapping between the EGO-sorted dataset and our shared work queue, as

represented in Figure 4.3.
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Figure 4.3: Illustration of an input dataset D, the shared deque sorted by workload Q, the
input dataset EGO-sorted E and the mapping M between Q and E. The numbers in D,
Q, and E correspond to query point ids, while the numbers in M correspond to their

position in E. The numbers below the arrays are the indices of the elements.

4.4.2 Workload Partitioning

As previously described, this paper proposes three different methods to partition the work

between the CPU and the GPU, using the shared work queue presented in Section 4.4.1.

Proposing these three methods allows us to extensively explore work partitioning charac-

teristics, as well as demonstrate the significance of an efficient work partitioning method.

Our three partitioning methods use the shared deque presented in Section 4.4.1, as in all

three cases the work still needs to be partitioned among threads. Thus, we describe these

partitioning strategies as follows.

4.4.2.1 Dynamic Work Partitioning Strategy

Our dynamic work partitioning strategy assigns work to the CPU and GPU on-demand

until the queue is empty. Constantly querying the queue for a fraction of work provides good

load balancing, as the processors are likely to complete their last batch of queries at roughly

the same time. The CPU and GPU are both assigned a batch size large enough to accom-

modate their relative performance (particularly for the GPU, to achieve good occupancy),

as well as to reduce the number of atomic accesses to the queue. However, the batch size for

the CPu and GPu is also not too large, so they are not assigned too many query points as it

might leave a processor without work to compute while the other one is computing a large

batch. Figure 4.2 illustrates how the dynamic partitioning strategy works. We describe the

procedure used to assign the query points to the processors as follows:
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1. We set the GPU’s deque index to 1 and the CPU’s deque index to |D|.

2. The program terminates if the GPU’s and CPU’s indices are at the same position in

the deque.

3. To assign query points to a GPU stream, we create and assign a new batch of queries

to this GPU stream, and increase GPU’s deque index.

4. To assign query points to CPU thread, we create and assign a new batch of queries to

this CPU thread, and decrease CPU’s deque index.

4.4.2.2 Static Partitioning Strategy Based on Query Points

This static work partitioning method splits the number of query points between the

processors, using a static partitioning fraction pq, where 0 ≤ pq ≤ 1. Hence, from pq and a

number of query points (|D|), we can determine the number of query points nGPU
q to assign

to the GPU and, by extension, to the CPU. This partitioning fraction pq is determined based

on the estimation of the workload west, as a function of the number of query points and ϵ.

We consider for this partitioning strategy the equal workload assumption, that we describe

as follows.

Equal Workload Assumption: In this model, we assume that we do not know the workload

of each query point. Thus, we consider that each query point has the same workload. For

example, if data is largely unstructured, similarly to a uniform distribution, then all query

points would have roughly the same amount of work to compute. Then, based on the query

throughput of the CPU and GPU, we assign each architecture a fraction of the total number

of queries.

Figure 4.4 illustrates the static partitioning strategy based on query points. Using the

equal workload assumption, this example shows the case where the model assigns the same

number of query points to the CPU and GPU. In this example, we have an input dataset D

sorted by workload (Section 4.3.1.3) made of 100 query points (|D| = 100) and indexed by
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Figure 4.4: Representation of the static partitioning strategy based on the query points,
where D is the dataset sorted by workload, i refers to the indices of the query points in D,

and West the workload of the points using the equal workload assumption and that is
determined by our model (and where wtotal

est is the estimated workload of HEGJoin). As
we use the equal workload assumption, each query point is therefore assigned the same

workload. Furthermore, we consider in this example that the model considers the CPU and
GPU to have the same throughput, and thus assigns the same estimated workload to both

processors (wCPU
est = wGPU

est ), i.e., the same number of query points.

i. In this example, our model determines an overall workload wtotal
est = 600, which, following

the equal workload assumption, corresponds to each point having an estimated workload

west = wtotal
est /|D| = 6. We consider in this example that the model determines that the CPU

and GPU have the same throughput, and should therefore be assigned the same workload

(wCPU
est = wGPU

est ), and thus the same number of query points. Depending on the dataset’s

characteristics (such as its distribution), this estimated workload might differ from the actual

workload to compute, which may have an impact on the overall performance of HEGJoin

when using such a static partitioning strategy, compared to the other partitioning strategies

we propose in this paper.

Using the equal workload assumption, we propose a model to determine the static par-

titioning fraction pq for HEGJoin (where 0 ≤ pq ≤ 1). For a specific dataset in d di-

mensions, we consider a reference search distance ϵr, its search volume in d dimensions

v(ϵr) =
πd/2

Γ( d
2
+1)
× ϵr

d, and the corresponding execution time of LBJoin (TGPU
ϵr ) and Super-

EGO (TCPU
ϵr ) when computing the distance similarity join on d with the reference search

distance ϵr. Hence, for a given search distance ϵs for which we want to determine the work

partitioning fraction pq, we predict the execution time of LBJoin and Super-EGO by
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scaling their execution time TGPU
ϵr and TCPU

ϵr by the ratio of the search volume v(ϵs) over the

reference search volume v(ϵr). The ratio v(ϵs)/v(ϵr) corresponds to the estimated workload

increase when the search distance increases as well. Thus, we predict the execution time of

the GPU-only algorithm (LBJoin) TGPU as follows:

TGPU(ϵs, ϵr, T
GPU
ϵr ) = TGPU

ϵr × v(ϵs)

v(ϵr)
(4.1)

Similarly, we predict the execution time of the CPU-only algorithm (Super-EGO) TCPU

as follows:

TCPU(ϵs, ϵr, T
CPU
ϵr ) = TCPU

ϵr × v(ϵs)

v(ϵr)
(4.2)

We then compute the GPU query throughput (the number of query points the GPU can

process per second) as fGPU
q = |D|/TGPU(ϵs, ϵr, T

GPU
ϵr ), as well as the CPU query throughput

fCPU
q = |D|/TCPU(ϵs, ϵr, T

CPU
ϵr ). In addition, we consider the upper bound query throughput

as fq = fGPU
q + fCPU

q , and which corresponds to the sum of the GPU and CPU query

throughput. Using this upper bound query throughput fq, we can predict the execution time

THEGJoin of HEGJoin when using any of our static partitioning strategies. We compute

this predicted execution time as follows:

THEGJoin = |D|/fq (4.3)

In addition to predicting the execution time of HEGJoin, we use the upper bound query

throughput fq to determine the static partitioning fraction pq as the ratio of fGPU
q over fq.

Consequently, we compute the static partitioning fraction as follows:

pq = fGPU
q /fq (4.4)

Finally, we use pq to determine the number of query points to assign to the GPU as
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nGPU
q = |D| × pq. By extension, we determine the number of query points to assign to the

CPU as nCPU
q = |D| − nGPU

q .

4.4.2.3 Static Partitioning Strategy Based on Candidate Points

Static partitioning based on candidate points considers the total number of candidate

points to refine, as well as the number of candidate points of the individual query points.

Hence, while the previous static partitioning strategy assumes an equal workload between

the query points, we acknowledge here that the query points are likely to each have a different

workload. We thus propose the unequal workload assumption as follows.

Unequal Workload Assumption: We consider for this model that each query point can

have a workload different from the other query points. Hence, if a dataset has dense regions

and sparse regions, the workload that is assigned to the query points is an accurate reflection

of their workload in comparison to the equal workload assumption.

Figure 4.5 illustrates the static partitioning strategy based on the number of candidate

points to refine. In this example, the model considers that the CPU and GPU have the same

throughput and should, therefore, be assigned the same number of candidate points to refine.

Hence, we have an input datasetD with 100 query points (|D| = 100) that are sorted by their

respective workload w, and a total number of candidate points to refine wtotal = 626. This

model estimates a number of candidate points to refine wtotal
est = 626, which is split equally

between the CPU and the GPU (as the model considers they have the same throughput in

this example). Thus, the GPU is assigned an estimated total number of candidate points

to refine wGPU
est = 313, and wCPU

est = 313 for the CPU. And, since this model considers the

unequal workload assumption, the GPU’s workload is the same as its estimated workload

(wGPU = wGPU
est ). The same outcome applies to the CPU (wCPU = wCPU

est ). Furthermore,

while this example workload corresponds to 11 query points for the GPU and 89 query

points for the CPU (determined by the cumulative workload of these query points), the

respective total number of candidate points to refine of the GPU and the CPU is similar
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Figure 4.5: Representation of the static partitioning strategy based on the candidate
points, where D is the dataset, i the indices of the query points in D, the workload of the
points w as used to sort them by their workload (and where wTotal is the total number of
candidate points to refine), and west the workload of the query points determined by the
model (and where wtotal

est is the total estimated workload of HEGJoin). While we consider
for this example that the model estimates a workload that is equal to the workload of
HEGJoin (wtotal

est = wTotal), there might be scenarios in which wtotal
est and wTotal are

different. We consider in this example that the model estimates the CPU and GPU to have
the same throughput, and thus assign the same number of estimated candidate points to
refine to the CPU and to the GPU (wCPU

est = wGPU
est ). Furthermore, as in this example the

estimated workload is the same as the actual workload of HEGJoin (wtotal
est = wTotal), both

processors are assigned the same amount of work to compute (wGPU = wCPU), i.e., the
same number of candidate points to refine.

(wGPU ≈ wCPU). Given that the CPU and GPU are considered to have the same throughput

in this example, this strategy should yield a relatively low load imbalance between the CPU

and GPU.

This static partitioning strategy uses Equations 4.1 and 4.2 to predict the execution time

of LBJoin and Super-EGO for a specific dataset and a given search distance ϵs. Hence, we

use the total number of candidate points to refine w, as determined when sorting the query

points by their workload, in addition to the predicted execution time TGPU(ϵs, ϵr, T
GPU
ϵr ) to

compute the GPU candidate point throughput (the number of candidate points the GPU

can refine per second) fGPU
c = w/TGPU(ϵs, ϵr, T

GPU
ϵr ). Similarly to the GPU, we compute the

number of candidate points throughput refined by the CPU fCPU
c = w/TCPU(ϵs, ϵr, T

CPU
ϵr ).

In comparison to the static partitioning based on the query points (Section 4.4.2.2), we

compute here the upper bound throughput of the number of candidate points refined fc =
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fGPU
c + fCPU

c , which corresponds to the sum of the throughput of the number of candidate

points refined by the CPU and GPU. We then use this upper bound candidate refinement

throughput to determine the static partitioning fraction pc (where 0 ≤ pc ≤ 1), and which

is computed as follows:

pc = fGPU
c /fc (4.5)

We then use this static partitioning fraction pc to determine the number of candidate

points to assign to the GPU, nGPU
c = w × pc. Similarly, we determine the number of

candidate points to assign the CPU, nCPU
c = w − nGPU

c . Furthermore, as we consider the

unequal workload assumption we described above, we need to find the number of query

points to assign to the GPU, nGPU
q , and for which their cumulative workload is the closest

to the GPU’s assigned workload nGPU
c (by extension, we also find nCPU

q = |D| − nGPU
q ).

While the GPU and CPU do not use the same indexing method, and thus do not yield

the same number of candidate points to refine, our experimental evaluation (Section 4.5) will

show that the number of candidate points to refine, w, yielded by the grid indexing schemes

in LBJoin (Section 4.3.1) and Super-EGO (Section 4.3.2) are roughly consistent such that

we assume w is equal for both indexing schemes.

4.4.2.4 Summary of Work Partitioning Strategies

In this section, we summarize the key points of the work partitioning strategies we pre-

sented in sections 4.4.2.1, 4.4.2.2 and 4.4.2.3 above.

• Dynamic Partitioning Strategy: This work partitioning strategy uses the shared

deque proposed in Section 4.4.1 to assign query points to the CPU and GPU on-

demand, until the deque is empty. The main objective of this partitioning method is

to have the CPU and GPU finishing their last batch of query points roughly at the

same time, particularly by frequently querying the deque for a new batch to compute.
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We denote HEGJoin using this dynamic partitioning strategy as HEGJoin-Dyn.

• Static Partitioning Strategy Based on Query Points: The static partitioning

strategy based on query points that we described in Section 4.4.2.2 estimates the

workload of HEGJoin to assign a number of query points to the CPU and GPU.

Given a specific dataset, a search distance ϵr and the execution time of LBJoin and

Super-EGO, this strategy estimates the computation time of HEGJoin by scaling

the execution time of LBJoin and Super-EGO using ϵr and the search distance used

to compute the distance similarity join. From this estimated computation time and

the execution time of the GPU-only and CPU-only algorithms, we determine the static

partitioning fraction pq (where 0 ≤ pq ≤ 1), and then the number of query points to

assign to the GPU and CPU, assuming all the query points have an equal workload.

We denote HEGJoin using this static partitioning strategy based on query points as

HEGJoin-SQ.

• Static Partitioning Strategy Based on Candidate Points: This static partition-

ing strategy based on candidate points that we introduced in Section 4.4.2.3 divides

the total number of candidate points to refine between the CPU and GPU. Similarly

to the partitioning method based on query points, we predict the execution time of

LBJoin and Super-EGO the same way as we do for the static partitioning strategy

based on query points. However, we use this predicted execution time to determine the

static partitioning fraction pc and splits the total number of candidate points to assign

to the CPU and GPU. Hence, we determine the number of candidate points to assign

to the GPU and CPU, and then find the number of query points whose cumulative

workload is the closest to the workload assigned to the GPU. Similarly, we determine

the number of query points to assign to the CPU. We denote HEGJoin using this

static partitioning strategy based on candidate points as HEGJoin-SC.

Table 4.1 summarizes the properties of HEGJoin-Dyn, HEGJoin-SQ, and HEGJoin-
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Figure 4.6: Representation of the new batch estimator. The bold numbers are the
estimated number of neighbors of those points, while the other numbers are inferred, based

on the maximum result between the two closest estimated points shown in bold.

SC.HEGJoin-Dyn andHEGJoin-SC have mutually exclusive properties, whereasHEGJoin-

SQ overlaps the properties of HEGJoin-Dyn and HEGJoin-SC. By examining these three

work partitioning strategies, we cover a large range of properties, thus enabling us to make

a comprehensive examination of work distribution in HEGJoin.

Table 4.1: Summary of the different properties of HEGJoin-Dyn, HEGJoin-SQ, and
HEGJoin-SC.

HEGJoin-Dyn HEGJoin-SQ HEGJoin-SC
Workload-oblivious ✓ ✓
Workload-aware ✓
On-demand ✓
Planned ✓ ✓
Architecture-oblivious ✓
Architecture-aware ✓ ✓

4.4.3 Batching Scheme: Complying with Non-Increasing Workload

Because the batching scheme proposed by Gowanlock and Karsin [45] and presented in

Section 4.3.1.2 was not designed for non-increasing workloads, we had to adapt it to fit our

sort by workload strategy (Section 4.3.1.3) and its non-increasing workload. Indeed, as the

batch estimator creates batches with a fixed number of query points, and because the query

points are sorted by workload, this batching scheme creates successive batches with a non-

increasing workload. Hence, as the execution proceeds, the batches become smaller, take

less time to compute, and the overhead of launching many kernels may become substantial,

particularly when the computation could have been executed with fewer batches.

We modify the batching scheme (Section 4.3.1.2) to accommodate the sort by workload

strategy, and that is represented in Figure 4.6. While still estimating a fraction of the points,
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the rest of the points get a number of neighbors inferred from the maximum value of the

two closest estimated points (to overestimate and avoid buffer overflow during computation).

Adding the estimated and the inferred number of neighbors yields an estimated result set

size ne. We then create the batches so they have a consistent result set size rl close to the

buffer size ns. As the number of estimated neighbors should decrease (as their workload

decreases), the number of query points per batch increases.

When using the dynamic partitioning (Section 4.4.2.1), we set a minimum number of

batches to 2× nf , where nf = 3 is the number of CUDA streams used. Therefore, the GPU

can only initially be assigned up to half of the queries in the work queue. This ensures that

the GPU is not initially assigned too many queries, which would otherwise starve the CPU

of work to compute. When using a static partitioning strategy (Sections 4.4.2.2 and 4.4.2.3),

then we set the minimum number of batches for the GPU nf = 3, so each CUDA stream has

at least a batch to compute. We do not create more batches for the CPU, as it already has

its own reserved fraction of the work, determined by one of the static partitioning strategies.

4.4.4 GPU Component: HEGJoin-GPU

The GPU component of our heterogeneous algorithm, which we denote as HEGJoin-

GPU and that we can divide into two parts (the host and the kernel), remains mostly

unchanged from the algorithm proposed by Gallet and Gowanlock [35] and presented in

Section 4.3.

Regarding the host side of our GPU component, we modify how the kernels are instan-

tiated to use the shared work deque presented in Section 4.4.1. Therefore, as the original

algorithm was looping over all the batches (as given by the batch estimator, presented in

Section 4.3), the algorithm now loops while the shared deque returns a batch to compute

(Section 4.4.1).

In the kernel, since the work queue has been relocated to the CPU, a batch corresponds

to a range of queries in the deque whose interval is determined when taking a new batch
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from the queue, and can be viewed as a “local queue” on the GPU. Therefore, the threads

in the kernel update a counter that is local to the batch to determine which query point

to compute, still following the non-increasing workload that yields a good load balancing

between threads in the same warp.

4.4.5 CPU Component: HEGJoin-CPU

The CPU component of HEGJoin, which we denote as HEGJoin-CPU, is based on

the Super-EGO algorithm proposed by Kalashnikov [57] and presented in Section 4.3.2.

We make several modifications to Super-EGO to incorporate the shared deque we use, and

we also optimize Super-EGO to improve its performance. We denote this improved version

of Super-EGO as New-Super-EGO.

As described in Section 4.3.2, Super-EGO uses a queue and a producer-consumer system

for multithreading. We remove this system and replace it with our shared deque. Because the

threads are continuously taking work from the shared deque until it is empty, the producer-

consumer system originally used becomes unnecessary, as the deque informs New-Super-

EGO when it is empty.

The original Super-EGO algorithm recursively creates sub-partitions of contiguous

points on the input datasets until their size is suited for joining. As one of the parti-

tions is now taken from our deque, which is sorted by workload, it no longer corresponds

to a contiguous partition of the input dataset. Thus, we loop over the query points of the

batch given by the deque to join it with the other points in the partition. This optimization

requires the use of the mapping presented in Section 4.4.1 and illustrated in Figure 4.3.

Super-EGO uses qsort from the C standard library to EGO-sort, and we replace it

by the more efficient and parallel boost::sort::sample sort algorithm, a stable sort from

the Boost C++ library. This allows New-Super-EGO to start its computation earlier than

Super-EGO would, as it is faster than qsort. We use as many threads to sort as we use

to compute the join.

75



Finally, in contrast to the original Super-EGO algorithm, New-Super-EGO is now

capable to compute and to store data using 64-bit floats instead of only 32-bit floats.

4.5 Experimental Evaluation

In this section, we present the experimental evaluation we conducted to measure the

performance of HEGJoin against the work it leverages (LBJoin and Super-EGO), as

well as the efficiency of the different work partitioning strategies we propose in this paper.

4.5.1 Selectivity

We report the selectivity as defined by Kalashnikov [57] of our experiments as a function

of ϵ. We define the selectivity S = (|R| − |D|)/|D|, where R is the result set and D is the

input dataset. The selectivity thus corresponds to the average number of neighbors found

per query point, excluding the query points from finding themselves.

4.5.2 Datasets

In this section, we present the real-world and synthetic datasets we use to evaluate the

performance of HEGJoin and our partitioning strategies. We detail the real-world datasets

that we select as follows:

• SW- [69], composed of 1.86M or 5.16M points in two dimensions representing the

latitude and longitude of the objects, and adding the total number of electrons as the

third dimension.

• SDSS [5], composed of a sample of 15.23M galaxies in 2 dimensions.

• Gaia [2], in which we select the position of 50M objects from the Gaia catalog.

• OSM [1], which is a collection of GPS point data from OpenStreetMap, and in which

we also select 50M objects.
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Table 4.2: Summary of the datasets used to conduct our experiments. |D| denotes the
number of points, d the dimensionality, and S the selectivity range for the values of ϵ we
use. The Expo- datasets are exponentially distributed synthetic datasets (using λ = 40),

while the others are real-world datasets.

Dataset |D| d S Dataset |D| d S
Expo2D2M 2M 2 397–9.39K Expo2D10M 10M 2 80–1.99K
Expo3D2M 2M 3 64–6.70K Expo3D10M 10M 3 9–1.06K
Expo4D2M 2M 4 23–9.26K Expo4D10M 10M 4 3–1.63K
Expo6D2M 2M 6 0–2.68K Expo6D10M 10M 6 0–499
Expo8D2M 2M 8 0–157 Expo8D10M 10M 8 0–167
SW2DA 1.86M 2 295–5.82K SW2DB 5.16M 2 91–2.03K
SW3DA 1.86M 3 239–13.20K SW3DB 5.16M 3 33–2.13K
Gaia 50M 2 19–455 OSM 50M 2 67–571
SDSS 15.23M 2 1–31

In addition to the real-world datasets, we conduct experiments on exponentially dis-

tributed synthetic datasets made of 2M and 10M points spanning two to eight dimensions

(we detail later the datasets used to evaluate the static partitioning in particular). These

datasets are named using the dimensions and number of points; for example, Expo3D2M is

a 3-dimensional dataset containing 2M points. We elect to use an exponential distribution

(with λ = 40) as this distribution contains over-dense and under-dense regions, similarly to

the real-world datasets we select. Finally, exponential distributions yield a high load im-

balance between the points, and thus should illustrate the performance of HEGJoin when

there is a load imbalance between the CPU and GPU. Furthermore, we do not use uni-

formly distributed datasets, as this type of dataset would not yield load imbalance, as all

the query points would have roughly the same workload. We summarize these real-world

and exponentially distributed synthetic datasets in Table 4.2.

4.5.3 Methodology

We conduct all our experiments on the two following platforms:

• Platform 1: 2 × Intel Xeon E5-2683-v4 (with 2 × 16 cores), 256 GiB of main memory,

and an Nvidia Titan X with 12 GiB of global memory.
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• Platform 2: 2 × Intel Xeon E5-2620-v4 (with 2 × 8 cores), 128 GiB of main memory,

and an Nvidia Quadro GP100 with 16 GiB of global memory.

While we systematically present the results of the experiments using Platform 1, we only

show the results of the experiments using Platform 2 in Figure 4.13. The code executed by

the CPU is written in C++, while the GPU code is written using CUDA. We use the GNU

compiler and use the O3 optimization flag for all experiments.

We summarize the different implementations we evaluate as follows. For clarity, we dif-

ferentiate between similar algorithm components since they may use slightly different exper-

imental configurations. For example, we make the distinction between the CPU component

of HEGJoin, HEGJoin-CPU, and the original Super-EGO algorithm.

• LBJoin: the GPU algorithm proposed by Gallet and Gowanlock [35], using 3 GPU

streams (managed by 3 CPU threads), 256 threads per block, ns = 5× 107 key/value

pairs, where the dataset is stored as 64-bit floats, and nGPU
p is given by the batch

estimator presented in Section 4.4.3. This configuration is used on both platforms.

• Super-EGO: the CPU algorithm developed by Kalashnikov [57], using 32 (16) CPU

threads on Platform 1 (Platform 2), and we use 32-bit floats to store the dataset.

• New-Super-EGO: our optimized version of Super-EGO as presented in Section 4.4.5

that uses the sorting by workload strategy, using 32 (16) CPU threads on Platform 1

(Platform 2), and where the dataset is stored as 64-bit floats.

• HEGJoin-GPU: the GPU component of HEGJoin, using the same configuration as

LBJoin and one of the work partitioning strategies we propose (Section 4.4.2).

• HEGJoin-CPU: the CPU component of HEGJoin, using the same configuration as

New-Super-EGO and one of the work partitioning strategies (with nCPU
p = 1, 024

when using the dynamic partitioning and the shared deque).
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• HEGJoin: the heterogeneous algorithm that combinesHEGJoin-CPU andHEGJoin-

GPU. HEGJoin-Dyn denotes HEGJoin when using the dynamic partitioning strat-

egy, HEGJoin-SQ denotes HEGJoin when using the static partitioning strategy

based on query points, while HEGJoin-SC denotes HEGJoin when using the static

partitioning strategy based on candidate points.

HEGJoin-CPU and HEGJoin-GPU, as part of HEGJoin, each compute a fraction

of the work. LBJoin, Super-EGO, New-Super-EGO and HEGJoin are standalone

algorithms, and thus compute all the work. All response times are averaged over three time

trials and include the end-to-end computation time, i.e., the time to construct the grid index

on the GPU, sort by workload, reorder the dimensions and to EGO-sort, and the time to

join. Note that some of these time components may overlap (e.g., EGO-sort and GPU

computation may occur concurrently).

4.5.4 Results

In this section, we present the results of our experimental evaluation. We provide a

roadmap for the organization of our results as follows:

• In Section 4.5.4.1, we present the performance of New-Super-EGO when compared

to Super-EGO.

• In Section 4.5.4.2, we compare the search space pruning efficiency of the indexes used

by New-Super-EGO and LBJoin.

• In Section 4.5.4.3, we outline the accuracy of the models used by HEGJoin-SQ and

HEGJoin-SC that we proposed in Sections 4.4.2.2 and 4.4.2.3.

• After the baseline performance has been demonstrated in Sections 4.5.4.1–4.5.4.3,

in Section 4.5.4.4 we show the performance of HEGJoin-Dyn, HEGJoin-SQ and

HEGJoin-SC, as compared to the leveraged algorithms, New-Super-EGO and LB-

Join.
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• In Section 4.5.4.5, we evaluate the efficiency of our shared work queue by measuring

the load imbalance between the CPU and GPU.

• In Section 4.5.4.6, we assess the overhead incurred by the data transfers between the

CPU and GPU when using HEGJoin.

4.5.4.1 Performance of New-Super-EGO

In this section, we evaluate the performance of New-Super-EGO, the optimized version

of Super-EGO. The major optimizations include a different sorting algorithm, using the

sorting by workload strategy and work queue (Section 4.4.5). The experiments in this section

were conducted on a selection of datasets from Table 4.2. The results we show in this section

are from using Platform 1.

We evaluate the performance of EGO-sort using the parallel sample sort algorithm

from the C++ Boost library over the qsort algorithm from the C standard library. sam-

ple sort is used by New-Super-EGO (and thus by HEGJoin), while qsort is used by

Super-EGO. Figure 4.7(a) plots the speedup of sample sort over qsort on our synthetic

datasets. We observe an average speedup of 7.18× and 10.55× on the 2M and 10M points

datasets, respectively. Note that we elect to use the sample sort as the EGO-sort needs

to be stable.

Figure 4.7(b) plots the speedup of New-Super-EGO over Super-EGO on the SW-

real-world datasets. New-Super-EGO achieves an average speedup of 1.63× over Super-

EGO. While New-Super-EGO stores data as 64-bit floats, Super-EGO only uses 32-bit

floats and thus has a performance advantage compared to New-Super-EGO. The overall

speedup is explained by using sample sort over qsort, and the sorting by workload strat-

egy with the work queue. Therefore, New-Super-EGO largely benefits from balancing the

workload between its threads and from using the work queue.
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Figure 4.7: (a) Speedup to EGO-Sort our exponentially distributed synthetic datasets
using sample sort from the Boost library over qsort from the C standard library.
S = 0–9.39K and S = 0–1.99K on the 2M and 10M points datasets, respectively. (b)

Speedup of New-Super-EGO over Super-EGO on the SW- real-world datasets. Results
from Platform 1.

4.5.4.2 Candidate Point Pruning Efficiency of LBJoin and New-Super-EGO

In this section, we explore the pruning efficiency of the grid when used by LBJoin and

when used by New-Super-EGO. As we mentioned in Section 4.4.2.3, because LBJoin and

New-Super-EGO use two different grid indexes, the pruning of the search space may yield

a different number of candidate points to refine. Hence, we compare in Table 4.3 the number

of candidate points refined by LBJoin and New-Super-EGO, as well as the ratio of the

number of candidate points refined by LBJoin over the number of candidate points refined

by New-Super-EGO on a selection of datasets. We observe that in lower dimensions, the

difference in the number of candidate points refined by LBJoin and New-Super-EGO is

relatively low, as the ratio is around 1. However, as dimensionality increases, we observe

that this ratio tends to decrease, indicating that New-Super-EGO becomes less efficient

at pruning the search space than LBJoin. The results we show in this section are from

Platform 1.
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Table 4.3: Comparison of the number of candidate points refined by LBJoin vs.
New-Super-EGO, and ratio of the number of candidate points refined by LBJoin over

the number of candidate points refined by New-Super-EGO on a selection of our
datasets (Table 4.2). Results from Platform 1.

Dataset ϵ S LBJoin New-Super-EGO Ratio
SW2DA 1.5 5.82K 28,441,701,752 27,786,778,388 1.02
SDSS 0.002 31 65,531,735,119 66,154,801,616 0.99
SW3DA 3.0 13.20K 90,349,946,258 87,855,196,567 1.03

Expo2D2M 0.002 9.39K 51,789,286,408 50,121,273,123 1.03
Expo2D10M 0.0004 1.99K 56,439,981,246 54,645,837,741 1.03
Expo4D2M 0.01 9.26K 113,929,159,776 177,787,029,288 0.64
Expo4D10M 0.004 1.63K 217,420,698,818 216,050,585,244 1.01
Expo8D2M 0.015 157 77,827,299,052 108,430,322,625 0.72
Expo8D10M 0.012 167 207,650,110,734 374,000,045,202 0.56

4.5.4.3 Model Validation for HEGJoin-SQ and HEGJoin-SC

In this section, we evaluate the accuracy of the models we propose for the static partition-

ing strategies based on query points (Section 4.4.2.2) and based on the number of candidate

points to refine (Section 4.4.2.3). The results we show in this section are from Platform 1.

Figure 4.8 plots the modeled execution time of LBJoin as TGPU and the modeled execu-

tion time of New-Super-EGO as TCPU on a selection of datasets. We observe that in 2-D

(Figures 4.8(a) and (b)), the model determines an execution time similar to the execution

time of LBJoin and New-Super-EGO. In 4-D (Figure 4.8(c)), while the modeled time

for LBJoin is accurate, the modeled time of New-Super-EGO is overestimated when

ϵ > 2.4 × 10−3. On the Expo6D10M dataset (Figure 4.8(d)), we observe that the mod-

eled time of both LBJoin and New-Super-EGO are overestimated when ϵ > 4.8× 10−3.

Thus, we observe that the model may sometimes not accurately predict the response time of

HEGJoin and, therefore, may yield a poor distribution of the work to the CPU and GPU.

This poor distribution is particularly impactful when the execution time of a processor

is overestimated, while the execution time of the other processor is underestimated. As the

model yields fq = fc, the workload of the static partitioning based on the query points

is likely to be higher than the workload of the static partitioning based on the number of
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Figure 4.8: Comparison of the modeled execution times TGPU and TCPU vs. their
corresponding reference execution times LBJoin and New-Super-EGO on a selection of

datasets: (a) SW2DA, (b) Gaia, (c) Expo4D10M and (d) Expo6D10M. Results from
Platform 1.

candidate points to refine. Indeed, because the query points are sorted by their workload

in a non-increasing order (Section 4.3.1.3), the number of query points determined by the

static partitioning fraction fq will very likely have a cumulative workload higher than the

workload yielded by the static partitioning of the candidate points determined by the static

partitioning fraction fc.

Figure 4.9 plots the modeled execution time of HEGJoin as determined by the static

partitioning model (Section 4.4.2.2) vs. the response time of HEGJoin-SQ and HEGJoin-

SC on a selection of datasets. We observe on the 2-D datasets (Figures 4.9(a) and (b)) that

the modeled execution time for HEGJoin is slightly underestimated compared to the exe-
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Figure 4.9: Comparison of the modeled execution time of HEGJoin as determined by the
static partitioning model vs. the response time of HEGJoin-SQ and HEGJoin-SC on a
selection of datasets: (a) SW2DA, (b) Gaia, (c) Expo4D10M and (d) Expo6D10M. Results

from Platform 1.

cution time of HEGJoin-SQ and HEGJoin-SQ. As we mentioned before, low-dimensional

searches are memory-bound, a bottleneck that the model is unable to capture and thus to in-

clude in its modeled time. Indeed, as we consider the upper bound throughput as the sum of

LBJoin and New-Super-EGO respective throughput, we assume that concurrently using

the CPU and the GPU scales perfectly, without said bottlenecks. Nevertheless, the modeled

execution time of HEGJoin is overall similar to the execution time of HEGJoin-SQ and

HEGJoin-SC. On the Expo4D10M, and despite its overestimation of the modeled time of

New-Super-EGO (Figure 4.8(c)), the modeled execution time of HEGJoin is very similar

to the execution time of HEGJoin-SQ and HEGJoin-SC. Finally, the overestimation of
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both the modeled time of LBJoin and New-Super-EGO on the Expo6D10M dataset (Fig-

ure 4.8(d)), is also reflected in Figure 4.9(d), as the modeled execution time of HEGJoin

is also overestimated compared to the execution time of HEGJoin-SQ and HEGJoin-SC.

However, we observe that the modeled execution time of HEGJoin is very similar to the

modeled execution time of LBJoin (Figure 4.8(d)), which means that the model considers,

for this dataset, that HEGJoin is mostly relying on the GPU to compute the majority of the

work. On the Expo6D10M dataset, we would thus expect HEGJoin-SQ and HEGJoin-SC

to have a rather high load imbalance, as the CPU is likely to have little work to compute,

and therefore to have to wait for the GPU to finish its computation. We confirm this expec-

tation in Section 4.5.4.5 when evaluating the load imbalance of the partitioning strategies

we propose.

4.5.4.4 Performance of the Work Partitioning Strategies

In this section, we evaluate the performance of our three work partitioning strategies,

i.e., HEGJoin-Dyn, HEGJoin-SQ, and HEGJoin-SC. We compare their performance

to LBJoin and New-Super-EGO. While we show results for a selection of our synthetic

datasets (Figure 4.10) that span multiple dimensions and size, we show the results on all our

real-world datasets (Figure 4.11). The results we show in this section are from Platform 1.

Performance on Exponential Datasets: Figure 4.10 plots the response time of HEGJoin-

Dyn,HEGJoin-SQ,HEGJoin-SC, LBJoin andNew-Super-EGO on the (a) Expo2D2M,

(b) Expo2D10M, (c) Expo4D10M, (d) Expo6D10M, (e) Expo8D2M and (f) Expo8D10M

datasets. We select these datasets as they span multiple dimensions and different sizes.

We observe on most datasets (Figures 4.10(a)–(d)) that HEGJoin-Dyn and HEGJoin-SC

overall yield similar performance, while HEGJoin-SQ is rather inefficient as it does not

substantially improve the execution time of either LBJoin or New-Super-EGO. Thus,

using the number of candidate points in the model that is used to statically partition the

work yields a better work distribution than not considering the candidate points.
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Figure 4.10: Response time of HEGJoin-Dyn, HEGJoin-SQ, HEGJoin-SC, LBJoin
and New-Super-EGO on (a) Expo2D2M, (b) Expo2D10M, (c) Expo4D10M, (d)

Expo6D10M, (e) Expo8D2M, and (f) Expo8D10M. S is in the range (a) 397–9.39K, (b)
80–1.99K, (c) 3–1.63K, (d) 0–499, (e) 0–157, and (f) 0–167. Results from Platform 1.

In Figure 4.10 we observe on our highest dimensional datasets, and more particularly

for the intermediate values of ϵ (Expo8D2M where ϵ = 0.9 × 10−2, and Expo8D10M where

ϵ = 0.72× 10−2), that HEGJoin-Dyn response time does not monotonically increase with

ϵ as it is the case in lower dimensions. This occurs because few batches are executed on the

GPU, and which take a significant amount of time. This prevents the CPU from taking work

from the work queue, thereby increasing the load imbalance between the CPU and GPU.

At higher values of ϵ there is less load imbalance between the CPU and GPU; therefore,

the response time decreases. On the other hand, we find that on these datasets (Expo8D2M

and Expo8D10M ), HEGJoin-SQ is often the most efficient partitioning strategy, while the

performance of HEGJoin-SC is between LBJoin and New-Super-EGO. If we examine

LBJoin and New-Super-EGO execution times for the median value of ϵ, we observe
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that the CPU is more efficient than the GPU. Hence, the model assumes that the CPU

is consistently more efficient for other values of ϵ, and will therefore assign more work to

the CPU. However, the LBJoin execution time does not increase as much as the model

predicted, while New-Super-EGO execution time increased more than what the model

predicted. Hence, the model will assign a higher fraction of the work to the CPU than

it is capable of processing within the execution time estimated by the model. On these

particular datasets (Expo8D2M and Expo8D10M ), since the execution time of LBJoin is

overestimated and the execution time of New-Super-EGO is underestimated, the static

partitioning based on query points ends up being the most efficient partitioning as ϵ increases,

since most of the work is assigned to the GPU.

As described in Section 4.1, we choose to focus on low dimensionality. Observe here that

the execution time of New-Super-EGO significantly degrades with dimensionality (Fig-

ures 4.10(d)–(f)). Therefore, if we were to employ New-Super-EGO at higher dimensions

than that explored in this work, the algorithm would have a negligible impact on performance

of HEGJoin. In higher dimensions, it would be more worthwhile to consider the use of a

different CPU algorithm to replace New-Super-EGO, such as that proposed by Perdacher

et al. [82].

Performance on Real-World Datasets: Figure 4.11 plots the response time of HEGJoin-

Dyn, HEGJoin-SQ, HEGJoin-SC, LBJoin and New-Super-EGO on the (a) SW2DA,

(b) SW3DA, (c) SW3DB, (d) SDSS, (e) Gaia and (f) OSM datasets. We observe on these

real-world datasets a similar behavior as on the Expo2D2M and Expo2D10M datasets (Fig-

ures 4.10(a) and (b)). Thus, we observe that the static partitioning based on the number

of candidate points to refine, HEGJoin-SC, achieves similar performance as the dynamic

partitioning HEGJoin-Dyn. Furthermore, we can see that both of these partitioning strate-

gies achieve similar or better performance than the best performance yielded by LBJoin or

New-Super-EGO. Furthermore, we observe that HEGJoin-SQ yields poor performance.

As we explained in Section 4.5.4.3, because the execution time may be overestimated or
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Figure 4.11: Response time of HEGJoin-Dyn, HEGJoin-SQ, HEGJoin-SC, LBJoin
and New-Super-EGO on (a) SW2DA, (b) SW3DA, (c) SW3DB, (d) SDSS, (e) Gaia, and

(f) OSM. S is in the range (a) 295–5.82K, (b) 239–13.2K, (c) 33–2.13K, (d) 1–31, (e)
19–455, and (f) 67–571. Results from Platform 1.

underestimated, a processor can be assigned too much work or too little work relative to its

real computational throughput.

Candidate Point Refinement Throughput: Table 4.4 presents the candidate point

refinement throughput (as previously defined in Section 4.4.2.3) for LBJoin, New-Super-

EGO,HEGJoin-Dyn, the upper bound (the total throughput given by adding the through-

put of the standalone LBJoin and New-Super-EGO algorithms), and the ratio of the

throughput HEGJoin-Dyn achieves compared to this upper bound throughput. The can-

didate throughput corresponds to the number of candidate points to refine, divided by the

response time of the algorithm, as shown in Figures 4.10 and 4.11. We observe a relatively

high performance ratio, demonstrating that we almost reach the performance upper bound

of HEGJoin. Moreover, we also observe that on the Expo8D10M dataset, we achieve a
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Table 4.4: Throughput of candidate points refined (candidates/s) by LBJoin,
New-Super-EGO, the upper bound of LBJoin plus New-Super-EGO,

HEGJoin-Dyn, and the performance ratio between HEGJoin-Dyn and the upper bound
across several datasets. Results from Platform 1.

Dataset ϵ S LBJoin New-Super-
EGO

Upper Bound HEGJoin-Dyn Perf. Ratio

Expo2D2M 0.002 9,392 893,877,929 2,812,071,408 3,705,949,337 3,185,072,965 0.86
Expo4D2M 0.01 9,262 672,847,132 1,777,133,999 2,449,981,131 2,209,642,354 0.90
Expo8D2M 0.015 157 3,881,606,529 1,410,542,112 3,659,149,867 3,372,066,683 0.92
Expo2D10M 0.0004 1,985 1,601,136,521 2,042,081,926 3,643,218,447 3,335,696,291 0.92
Expo4D10M 0.004 1,630 2,809,451,506 2,334,736,697 5,144,188,204 4,531,486,011 0.88
Expo8D10M 0.012 167 2,233,156,849 1,010,004,731 3,243,161,581 4,013,791,675 1.24
SW2DA 1.5 5,818 1,024,556,980 3,419,458,232 4,444,015,212 3,520,012,593 0.79
SDSS 0.002 31 1,798,770,443 2,208,414,897 4,007,185,340 3,673,303,538 0.92
Gaia 0.0003 455 1,696,613,608 2,347,964,353 4,044,577,961 2,903,111,440 0.72
OSM 0.00003 571 1,287,786,499 2,725,941,526 4,013,728,025 2,596,190,956 0.65

SW3DA 3.0 13,207 796,136,506 4,360,015,024 5,156,151,530 4,354,214,277 0.84

ratio of more than 1. We explain this by the fact that Expo8D10M is exponentially dis-

tributed, and therefore has very dense regions, as well as very sparse regions. Thus, the

throughput of LBJoin includes query points with a very low workload, thus increasing its

overall throughput compared to what HEGJoin-GPU achieves. Similarly, the throughput

of New-Super-EGO includes query points with a very large workload, thus reducing its

overall throughput compared to what HEGJoin-CPU achieves. When combining the two

algorithms, we have the GPU computing the query points with the largest workload and the

CPU the points with the smallest workload. The respective throughput of each component

should, therefore, be lower for the GPU and higher for the CPU, than their throughput when

computing the entire dataset.

Performance ratios lower than 1 (Table 4.4) indicate that there are several bottlenecks,

including contention for memory bandwidth, with the peak bandwidth potentially reached

when concurrently storing the results from the CPU and the GPU. We particularly observe

this on low dimensionality and for low selectivity, as it yields less computation and higher

memory pressure than in higher dimensions or for higher selectivity (Figures 4.10 and 4.11).

We confirm this by examining the ratio of kernel execution time over the time to compute all

batches of LBJoin. Focusing on the datasets with the minimum and maximum performance
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Figure 4.12: Load imbalance ratio of (a) HEGJoin-Dyn, (b) HEGJoin-SQ and (c)
HEGJoin-SC on all the datasets we use for our experiments, and we described in

Table 4.2. The horizontal dashed line corresponds to the average load imbalance k, and is
as follows: (a) k = 0.14, (b) k = 0.53 and (c) k = 0.32. Results from Platform 1.

ratio from Table 4.4, we find that on Gaia, LBJoin has a kernel execution time ratio of 0.06,

while on Expo8D10M, LBJoin has a kernel execution time ratio of 0.98. Hence, most of the

Gaia execution time is spent on memory operations, while on Expo8D10M, the execution

time is mostly spent on computation. When executing LBJoin on Gaia (and other datasets

with low ratios in Table 4.4), we observe that the use of the GPU hinders the CPU by using

a non-negligible fraction of the total available memory bandwidth.

4.5.4.5 Load Balancing Efficiency

We define the load imbalance of HEGJoin as follows. Given the total execution time

T , the time tGPU (tCPU) at which the GPU (CPU) ends its work, we characterize the load

imbalance ratio as k = (|tGPU − tCPU |)/T . A load imbalance ratio close to 0 therefore

indicates that the CPU and GPU ended their work at roughly the same time, and thus, that

the load imbalance between the CPU and GPU is low. The results we show in this section

are from Platform 1.

Figure 4.12 plots the load imbalance ratio of (a) HEGJoin-Dyn, (b) HEGJoin-SQ

and (c) HEGJoin-SC across all the datasets we present in Table 4.2. We observe in Fig-

90



ure 4.12(a) that HEGJoin-Dyn (Section 4.4.2.1) achieves a fairly good load balancing, as it

achieves an average load imbalance ratio of k = 0.14. Furthermore, the datasets in higher di-

mensions (such as Expo6D- and Expo8D-) are distinguished by a high load imbalance (with

the highest load imbalance ratio, k = 0.62, recorded on the Expo8D10M dataset and for

ϵ = 0.72 × 10−2). We explain this by the fact that the computation on these datasets is

made in only a few large batches (Section 4.3.1.2), and thus explained by the CPU and GPU

less frequently accessing the shared deque than in lower dimensions. While having more

batches with a reduced size would improve load balancing, it would negatively impact the

GPU’s performance, as the GPU may be underutilized.

Figure 4.12(b) plots the load imbalance ratio of the static partitioning based on query

points, HEGJoin-SQ (Section 4.4.2.2). We immediately observe a high average load imbal-

ance of k = 0.53, meaning that on average, the CPU or GPU spend half of the execution time

idle. Hence, HEGJoin-SQ yields a load imbalance of up to k = 0.91 on the Expo4D10M

dataset when ϵ = 4.0× 10−3. Considering that HEGJoin-SC is usually more efficient than

HEGJoin-SQ (Figures 4.10 and 4.11) and yet uses the same model to predict the execution

time, the high load imbalance of HEGJoin-SQ is therefore explained by how the work is

partitioned between the CPU and GPU, based on query points. Indeed, as we explained

above (Section 4.5.4.4), on datasets such as Expo8D2M and Expo8D10M (Figures 4.10(e)

and (f)), as the query points are sorted by workload, the workload assigned to the GPU when

partitioning based on query points is higher than the workload assigned when partitioning

based on the number of candidate points to refine. Examining the average load imbalance

across all values of ϵ of the SW2DA dataset, we observe that the average load imbalance

is k = 0.12 for HEGJoin-Dyn, k = 0.22 for HEGJoin-SC, and k = 0.57 for HEGJoin-

SQ. However, on the Expo8D10M dataset and for all the values of ϵ we experiment on this

dataset with, the average load imbalance is k = 0.46 for HEGJoin-Dyn, k = 0.66 for

HEGJoin-SC, while k = 0.29 for HEGJoin-SQ. Hence, the situations where HEGJoin-

SQ achieves a low load imbalance are essentially exceptions to the rather bad performance
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of HEGJoin-SQ, as they are the result of the model’s inaccuracy in such situations.

Figure 4.12(c) plots the load imbalance ratio of HEGJoin-SC, i.e., HEGJoin using

the static partitioning based on the number of candidate points to refine (Section 4.4.2.3).

We observe an average load imbalance ratio of k = 0.32, which is between the average load

imbalance ratio of HEGJoin (k = 0.14) and HEGJoin-SQ (k = 0.53). Furthermore, the

highest load imbalance yielded by this static partitioning strategy is on the Expo8D10M

dataset when ϵ = 0.96 × 10−2, where k = 0.89. The issue on this dataset is the same as

when partitioning based on query points: the model is not able to predict situations where

the execution time of one of the processors does not increase as the model predicts it will (in

this case the execution time of LBJoin). Considering that the execution time of LBJoin

is overestimated and that the execution time of New-Super-EGO is underestimated, the

GPU is assigned a lower workload and the CPU a higher workload than what they are able

to process within the modeled execution time. Finally, and despite HEGJoin-SC having a

higher load imbalance than HEGJoin-Dyn, we observe that HEGJoin-SC is roughly as

efficient as HEGJoin-Dyn on many datasets and values of ϵ.

4.5.4.6 Data Transfer Overhead of HEGJoin

In this section, we evaluate the overhead of the data transfers between the CPU’s main

memory and the GPU’s global memory, regardless of their direction (from the CPU to the

GPU, and vice versa), which is known to be a bottleneck due to the relatively low memory

bandwidth of the PCIe-3 interconnect [62]. In Table 4.5 we report the time taken by all

the data transfers between the CPU and GPU, the total execution time, and the ratio of

the data transfers time to the total execution time, across a selection of datasets and ϵ

values. The values are recorded when using HEGJoin-Dyn on Platform 2, over a single

trial, and are measured using the Nvidia Visual Profiler. A ratio close to zero indicates that

the data transfers are negligible relative to the total execution time of the algorithm, while

higher ratios account for a large fraction of the total execution time and thus may degrade
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Table 4.5: Total time taken by data transfers between the CPU and the GPU, the total
execution time of the algorithm, and the upper bound overhead ratio of the data transfers
time to the execution time when using HEGJoin-Dyn. A ratio close to zero indicates an
insignificant overhead incurred by data transfers compared to the total execution time.

The ratios do not account for the periods of time where the data transfers and the kernel
executions overlap. The times were recorded on the Nvidia Visual Profiler over a single

time trial using Platform 2.

Dataset ϵ S Data transfer time
(s)

Execution time (s) Upper bound
overhead ratio

Expo2D2M 0.002 9,342 5.11 30.99 0.16
Expo4D2M 0.01 9,262 9.22 81.97 0.11
Expo8D2M 0.015 157 0.22 18.47 0.01
Expo2D10M 0.0004 1,985 6.69 27.16 0.25
Expo4D10M 0.004 1,630 8.21 55.27 0.15
Expo8D10M 0.012 167 1.19 116.61 0.01
SW2DA 1.5 5,818 2.66 13.91 0.19
SDSS 0.002 31 7.72 29.74 0.26
Gaia 0.0003 455 9.77 37.83 0.26
OSM 0.00003 571 8.73 36.98 0.24

SW3DA 3.0 13,207 9.41 40.73 0.23

performance. Recall that we use three streams to overlap data transfers with computation

(Section 4.3.1.2). However, since there is not a direct way to account for the overlap of data

transfers with kernel execution (computation), we consider here that no such overlap occurs.

Therefore, ratios we report in Table 4.5 capture the upper bound (worst-case) data transfer

overhead.

We observe in Table 4.5 that the ratios of the data transfers time to the total execution

time of HEGJoin-Dyn are relatively low across our experiments, despite only capturing the

upper bound as described above. Furthermore, the experiments with the highest selectivity

(e.g., SW3DA for ϵ = 3.0) or the largest datasets (e.g., Gaia) yield the highest overhead

ratios, due to the large result set size that must be transferred from the GPU to the CPU, or

large datasets that must be transferred from the CPU to the GPU. However, in these cases,

the relatively high selectivity also yields a large number of batches to compute, making

it easier to overlap data transfers with kernel executions, which we could not account for

here. On experiments with a lower selectivity (e.g., Expo8D10M when ϵ = 0.012), the data
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transfers account for an insignificant amount of time compared to the high total execution

time of HEGJoin-Dyn, due to the relatively small size of the result set that needs to

be transferred from the GPU to the CPU. Overall, and given that the overhead ratios in

Table 4.5 consist of an upper bound, we consider that the data transfers between the CPU

and the GPU are marginally impacting the performance of HEGJoin.

4.5.5 Discussion

We summarize and discuss the major research findings in this paper. We find that

HEGJoin using the on-demand work queue (HEGJoin-Dyn) outperforms the two static

partitioning methods (HEGJoin-SQ and HEGJoin-SC) on most values of ϵ. Despite this

finding, HEGJoin-Dyn does not achieve low load imbalance between the CPU and GPU

components of the algorithm across all experimental scenarios (e.g., in Figure 4.12 there is

a mean load imbalance of k = 0.14). Therefore, dynamically assigning work to the CPU

and GPU components of the algorithm is challenging, even when distributing the work on-

demand. Part of the reason load imbalance occurs is because the performance characteristics

are fundamentally data-dependent regardless of the self-join algorithm (assuming such an

algorithm uses the search-and-refine strategy). Query points have differing amounts of work

to compute, so it is difficult to split the work and obtain low load imbalance between the

CPU and GPU regardless of the method used to distribute the work.

Regarding our performance models, we find that individually modeling the response

time of New-Super-EGO and LBJoin is accurate in some cases, and inaccurate in others

(Figure 4.8). We constrained the model to only require a single time measurement of New-

Super-EGO and LBJoin on each dataset. This restriction means that if the response

time increases non-linearly as a function of the search volume, then the model is unable to

adequately capture the measured response time. This led to the models overestimating the

response time in some cases, yielding a poor distribution of work between the CPU and GPU

for the static splitting strategies (HEGJoin-SQ and HEGJoin-SC).
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Our static partitioning strategies that distribute the work based on the performance mod-

els considered: (i) all query points have an identical amount of work to compute (HEGJoin-

SQ); and, (ii) query points have a varying amount of work to compute based on the size

of each query point’s candidate set (HEGJoin-SC). A good distribution of work to the

CPU and GPU requires that the models are able to adequately capture performance, and

we demonstrated this by showing that the partitioning strategy based on (ii) outperforms

(i) above. Despite HEGJoin-SC being able to capture the number of candidate points that

need to be refined per query point, we find that the model was unable to capture several per-

formance characteristics that degraded the performance of this static partitioning strategy

in some cases. We outline some factors that contribute to poor model accuracy as follows.

1. The size of the GPU batches must be substantially larger to saturate GPU resources;

therefore, this increases the chances that the CPU will be starved of work towards the

end of the computation, leading to non-negligible load imbalance.

2. The GPU component of HEGJoin reduces the main memory bandwidth of the CPU

component; therefore, if ϵ and data properties lead to a memory-bound execution, the

GPU’s memory operations will reduce the CPU’s available memory bandwidth, which

will lead to load imbalance.

3. Depending on data properties and ϵ, the GPU may be underutilized due to many fac-

tors, including those related to the SIMT architecture. Typically this occurs when

we observe that the response time is roughly “flat” with increasing ϵ (Figure 4.10(e)

and (f)). Since the GPU may be underutilized, increasing ϵ has little impact on per-

formance, which causes the model to overestimate the response time. An example of

this is shown in Figure 4.9(d) by comparing the execution time of HEGJoin-SC and

model curves.

4. Algorithms for the CPU typically achieve the best performance (lowest response time)

if they are work-efficient. However, the GPU’s architecture can break this work-efficient
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assumption, as algorithms designed for the GPU may be work-inefficient but achieve a

lower response time than a work-efficient algorithm that performs the same task [27].

Consequently, modeling the performance of a GPU-only algorithm is challenging, and

the addition of a concurrently executing CPU algorithm exacerbates this problem.
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Figure 4.13: Average speedup of HEGJoin-Dyn over (a) New-Super-EGO and (b)
LBJoin on Platform 1, and over (c) New-Super-EGO and (d) LBJoin on Platform 2,
across all datasets (Table 4.2). The horizontal dashed line corresponds to the average
speedup u, and is as follows: (a) u = 1.50, (b) u = 1.59, (c) u = 2.99, and (d) u = 1.23.

The horizontal solid line corresponds to a speedup of u = 1.0.

In summary, this paper yields insight into the self-join as executed on heterogeneous

architectures, which necessitates a comprehensive examination of the problem of work dis-

tribution between architectures. The insights described above outline several challenges

related to splitting the work using static and dynamic partitioning strategies. Despite these

aforementioned challenges, HEGJoin is more robust to dataset characteristics and search

distance, as we find that the algorithm generally outperforms the CPU/GPU-only counter-

parts. We show the speedup of HEGJoin over New-Super-EGO and LBJoin across all
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our datasets (Table 4.2), and evaluated on two different platforms in Figure 4.13. We thus

observe that HEGJoin-Dyn is, independently from the platform we used, on average more

efficient than LBJoin and New-Super-EGO.

4.6 Conclusion

In this paper, we propose HEGJoin, which is to the best of our knowledge the first

data-parallel heterogeneous and concurrent CPU-GPU algorithm that computes distance

similarity searches, and that leverages LBJoin and Super-EGO, two state-of-the-art algo-

rithms to compute distance similarity searches on the GPU and CPU, respectively. While the

computation of distance similarity searches is memory-bound in lower dimensions, it becomes

compute-bound in higher dimensions. In both of these situations, the GPU is very suitable

at computing distance similarity searches, due to its higher computational throughput and

memory bandwidth compared to the CPU.

We propose three work partitioning strategies to assign work to the CPU and GPU;

particularly, we propose a dynamic work partitioning strategy that assigns work to the CPU

and GPU on-demand through a shared deque, in addition to two static partitioning strategies

based on the number of query points, and based on the number of candidate points that will

need to be refined. The dynamic partitioning strategy simply does not consider the overall

workload of HEGJoin, and is efficient because of the shared deque and its on-demand work

assignment to the CPU and GPU. In contrast, the static partitioning strategy HEGJoin-SQ

is workload-oblivious, while HEGJoin-SC is workload-aware.

We described several insights into the work partitioning problem between the CPU and

GPU based on the static partitioning strategies. To summarize, the use of two different

architectures, combined with two different algorithms makes modeling HEGJoin a chal-

lenging task. This led to dynamic partitioning being generally more efficient than the two

static partitioning strategies. Despite the challenges of statically partitioning the work, we

find that HEGJoin with the dynamic deque is more robust to data distributions and the
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search radius of the self-join than the CPU-only and GPU-only algorithms. Consequently,

HEGJoin outperforms the CPU/GPU-only algorithms in most experimental scenarios.

The dynamic partitioning strategy achieved the best performance. Future work should

examine different ways to enhance the dynamic partitioning method described in this paper,

while still being able to accommodate the GPU’s requirement of processing large batches

of work to achieve high search throughput. By narrowing our focus on this task, we may

be able to further reduce the load imbalance observed, particularly on higher dimensional

datasets. Another research direction is to use non-parametric models to statically split the

work between the CPU and GPU, which may be able to better capture the complexity of the

algorithm. Another possibility is to use an adaptive model that could systematically select

the best work partitioning strategy based on data characteristics.
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Chapter 5

Leveraging GPU Tensor Cores for Double Precision Euclidean

Distance Calculations

This chapter consists of the peer-reviewed article appearing in the Proceedings of the

29th IEEE International Conference on High Performance Computing, Data, and Analytics

(HiPC) [38].

Abstract

Tensor cores (TCs) are a type of Application-Specific Integrated Circuit (ASIC) and

are a recent addition to Graphics Processing Unit (GPU) architectures. As such, TCs are

purposefully designed to greatly improve the performance of Matrix Multiply-Accumulate

(MMA) operations. While TCs are heavily studied for machine learning and closely related

fields, where their high efficiency is undeniable, MMA operations are not unique to these

fields. More generally, any computation that can be expressed as MMA operations can

leverage TCs, and potentially benefit from their higher computational throughput compared

to other general-purpose cores, such as CUDA cores on Nvidia GPUs. In this paper, we

propose the first double precision (FP64) Euclidean distance calculation algorithm, which

is expressed as MMA operations to leverage TCs on Nvidia GPUs, rather than the more

commonly used CUDA cores. To show that the Euclidean distance can be accelerated in

a real-world application, we evaluate our proposed TC algorithm on the distance similarity
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self-join problem, as the most computationally intensive part of the algorithm consists of

computing distances in a multi-dimensional space. We find that the performance gain from

using the tensor core algorithm over the CUDA core algorithm depends weakly on the dataset

size and distribution, but is strongly dependent on data dimensionality. Overall, TCs are

a compelling alternative to CUDA cores, particularly when the data dimensionality is low

(≤ 4), as we achieve an average speedup of 1.28× and up to 2.23× against a state-of-the-art

GPU distance similarity self-join algorithm. Furthermore, because this paper is among the

first to explore the use of TCs for FP64 general-purpose computation, future research is

promising.

5.1 Introduction

Tensor cores (TCs) are a type of Application-Specific Integrated Circuit (ASIC), and

are specifically designed for Matrix Multiply-Accumulate (MMA) operations. The high

specificity of TCs makes them typically more efficient at computing MMA operations, than

other more general-purpose cores such as CPU cores or GPU CUDA cores. Given four

matrices A,B,C, and D, TCs are designed to compute D = A × B + C (where C and D

may be the same matrix). Over the past few years, TCs have been heavily used for machine

learning and other fields requiring linear algebra, and few papers have examined broadening

the use of TCs for other algorithms. Despite their high specificity, TCs may also be very

versatile: any computation expressed with MMA operations, as defined above, should be

able to leverage TCs and consequently, benefit from their high computational throughput.

Several companies have proposed a version of TCs, each with its own different charac-

teristics. In this paper, we focus on the Nvidia GPU TCs. These TCs were first introduced

with the Volta generation in 20171. Since this first iteration, they have been implemented

in several GPU models and have greatly improved over time [72, 73, 76]. In particular,

1https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.

pdf
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while the first generation of TCs was only capable of computing in half precision using

16-bit floats (FP16), TCs are now capable of double precision computing using 64-bit floats

(FP64) with the Ampere generation [73]. This enables TCs to be used for applications where

high precision is critical. Furthermore, their number, as well as their theoretical computa-

tional throughput, have continued to increase, making them an attractive alternative to the

general-purpose CUDA cores.

As mentioned above, in this paper we focus on TCs proposed by Nvidia on their GPUs.

In addition to the CUDA API to access GPU functionalities, we also leverage the Warp

Matrix Multiply-Accumulate (WMMA) API [8, 78], which provides programmatic access to

TCs. While other libraries also give access to TCs, they are all higher level than the WMMA

API and less versatile, thus less suited to our use case. However, there are some limitations

when using the WMMA API. In particular, matrix sizes are limited to a few options, and not

all compute precisions are available or can be combined (e.g., FP32 for both multiplication

and accumulation is not available, and FP16 multiplication can not be combined with FP64

accumulation).

The Euclidean distance is a metric commonly used in many scientific applications, par-

ticularly for data analysis algorithms such as the distance similarity self-join [37, 44, 57,

82], the kNN [41], or the Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) [32] algorithms. Within these algorithms, distance calculations are usually

the most time-consuming fraction of the total computation [85]. In this paper, we propose

to improve the throughput of Euclidean distance calculations by leveraging TCs on the GPU,

and consequently also improve the overall performance of the algorithms mentioned above.

To illustrate greater applicability to these other algorithms, we use the distance similarity

self-join algorithm as a representative example case for the other data analysis algorithms

mentioned above. Given a dataset V in d dimensions, the distance similarity self-join al-

gorithm finds all pairs of points (a, b) that are within a distance threshold ϵ of each other;

dist(a, b) ≤ ϵ, where a, b ∈ V , and dist is the Euclidean distance function.
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This paper makes the following contributions:

• We propose a new algorithm for computing Euclidean distances using TCs, leveraging

the Nvidia Ampere architecture TCs [73] supporting double precision (FP64) compu-

tations.

• We integrate the aforementioned method into the distance similarity self-join algo-

rithm, that we name Tensor Euclidean Distance Join (TED-Join). We show that

TED-Join is competitive with the best parallel distance similarity self-joins in the

literature for multi-core CPUs and GPU CUDA cores.

• The solution we propose here extends beyond the distance similarity self-join algorithm

and can be integrated into other algorithms that use the distance similarity self-join,

or more generally Euclidean distance calculations, as a building block.

• We evaluate TED-Join across a broad range of datasets, that span several distribu-

tions, sizes and dimensionalities, and compare it to a state-of-the-art GPU CUDA cores

(GDS-Join [44]) and two multi-core CPU distance similarity join algorithms, Super-

EGO [57] and FGF-Hilbert [82]. We conclude that TED-Join should always be

preferred over Super-EGO and FGF-Hilbert, and should be preferred over GDS-

Join when the dimensionality d ≤ 4, where it achieves an average speedup of 1.28×

(and 1.07× when considering all the experiments we conducted), and up to 2.23×.

• To our knowledge, this paper proposes the first Euclidean distance calculation for TCs

using FP64 computation, and the first use of TCs for the distance similarity self-join.

The paper is outlined as follows: we present essential material in Section 5.2, including

an overview of TCs. We then present in Section 5.3 our solution that uses TCs to compute

Euclidean distances and its integration into the distance similarity self-join algorithm. We

show in Section 5.4 the performance of our solution compared to the state-of-the-art distance

102



similarity self-join algorithms, and we conclude and propose future research directions in

Section 5.5.

5.2 Background

5.2.1 Problem Statement

For two points a and b in d dimensions, and where ai represents the i
th coordinate of the

point a, and where i = 1, . . . , d, the Euclidean distance between a and b is defined as follows:

dist(a, b) =

√√√√ d∑
i=1

(ai − bi)2. (5.1)

The distance similarity self-join algorithm, as described above, takes a dataset V in d dimen-

sions as well as a search distance ϵ as inputs, and finds all the pairs of points (a, b) such that

dist(a, b) ≤ ϵ where a, b ∈ V , and where the distance function is, in this case, the Euclidean

distance defined in Equation 5.1. For a query point a, finding all the other points in V within

ϵ from a is called a range query (|V | range queries in total).

5.2.2 Tensor Cores (TCs)

TCs on GPUs are an Application-Specific Integrated Circuit (ASIC) designed for Matrix

Multiply-Accumulate (MMA) operations. Given four matrices A,B,C and D, this MMA

operation is expressed as D = A×B+C. Matrices C and D are the accumulators and may

be equivalent. In hardware, TCs are designed to process 4× 4 MMA operations. However,

the WMMA API only gives access to larger matrices (e.g., 16× 16). Therefore, several TCs

are used concurrently to perform MMA operations larger than 4 × 4. Due to their highly

specific design, TCs are significantly more efficient at MMA operations than CUDA cores:

double precision computation is presented as twice as efficient when using TCs compared to

CUDA cores on the Nvidia A100 GPU [73]. This significantly higher processing throughput
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is our motivation to transform Euclidean distance calculation into MMA operations, and

yield higher computational throughput.

The WMMA API [8, 78] provides some low-level access to TCs, giving us the highest

versatility possible. However, several limitations come along with this WMMA API. In

particular, it is limited to certain matrix sizes and compute precisions. Among the options

available, only a few are relevant to our work. In this paper, we focus on FP64 computation,

which limits us to only one size for each of our matrices. Let Mm,n be a matrix with m rows

and n columns. The matrices that we can use with double precision are thus A8,4, B4,8, C8,8,

and D8,8. We refer the reader to the documentation [78] for the other TCs options.

Programmatically, the matrices proposed by the WMMA API are called fragments, and

are stored into the GPU threads registers. The WMMA API defines several functions:

• load matrix sync(): Load a matrix fragment from memory.

• store matrix sync(): Store a matrix fragment into memory.

• mma sync(): Perform an MMA operation using TCs.

• fill fragment(): Fill a matrix fragment with a specified value.

As their name suggests, these function calls are synchronized. Hence, all 32 threads of

the warp are blocked until the operation is complete. The load and store functions take,

among other arguments, a stride between the elements comprising the matrix rows. Hence,

all the elements consisting of a row in the target matrix need to be coalesced in memory.

Furthermore, the individual elements of the matrix fragments are stored in an unspecified

order in the registers. Thus, contrary to regular arrays, the first element of a matrix may

not be stored in the first element of the fragment. Consequently, operations on an individual

element of a matrix fragment need to be applied to all the other elements, using a loop

iterating over all of the elements of the fragment.
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5.2.3 Tensor Cores in the Literature

As mentioned above, the literature concerning TCs heavily revolves around machine

learning and other closely related fields, and not many other types of applications employing

TCs [4, 27, 56, 63, 67]. We present in this section a selection of papers that discuss the use of

TCs for applications that focus more on computational/data-enabled science, similarly to this

paper. Moreover, since most of the literature seems to focus on low precision computations,

we believe that this paper is the first to propose an implementation using TCs for FP64

computations.

Dakkak et al. [27] propose a method to perform reduction and scan operations, using the

WMMA API to leverage TCs. Their reduction algorithm consists of multiplying a matrix

whose first row are ones and the rest are zeros with a matrix containing the values to reduce,

and accumulated with a matrix containing the result from previous reductions. Their scan

solution is similar but uses an upper triangular matrix filled with ones and where the rest are

zeros, instead of a single row filled with ones. Their proposed solutions achieve a speedup

of 100× for the reduction and 3× for the scan, compared to other state-of-the-art methods

not using TCs.

Ji and Wang [56] propose using TCs to improve the performance of the DBSCAN

algorithm. They mainly use TCs to compute distance matrices between the points that might

form a cluster, using the cosine similarity formula (in contrast to the Euclidean distance used

in this paper). They also use TCs to perform reductions, which are used to determine if

points belong to a cluster or not. Their solution using TCs achieves a speedup of up to

2.61× to compute distance matrices compared to using the CUDA cores. While this work is

very relevant to us, it differs in that they use a different distance metric (cosine similarity vs.

Euclidean distance), they do not use an index structure, and part of their work is exclusive

to the DBSCAN algorithm. In comparison, our solution essentially concerns the Euclidean

distance calculations and, therefore, more applications than the distance similarity self-join

that we just take as an example for this paper.
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Ahle and Silvestri [4] theorize using TCs to compute similarity searches. They use TCs

to compute either the Hamming, squared L2 distances, or cosine similarity through an inner

product operation, expressed as matrix multiplications. Additionally, they opt for the Local

Sensitivity Hashing (LSH) method, reducing the overall complexity of the computation sim-

ilarly to an indexing structure used by other similarity join solutions [44, 57, 82]. However,

and contrary to these solutions, the LSH method typically yields an approximate result.

5.2.4 Distance Similarity Joins

We discuss in this section several state-of-the-art parallel distance similarity self-join

algorithms [37, 44, 57, 82], which we use as reference implementations for our experimental

evaluation. These selected algorithms have in common that they use an indexing structure to

prune the number of distance calculations, which is a commonly used optimization [21, 22].

When using an index, it is first searched to yield a set of candidate points for each query

point. The set of candidate points is then refined using distance calculations to keep pairs

of query and candidate points that are within ϵ of each other.

Kalashnikov [57] proposes Super-EGO, a parallel CPU algorithm to compute a distance

similarity join, which is an improvement over the Epsilon Grid Order (EGO) algorithm

proposed by Böhm et al. [21]. Super-EGO performance relies on a grid index and which

is dependent on the search distance ϵ, where a grid with cells of size ϵ × ϵ is laid on the

search space to efficiently prune the candidate points to refine. Furthermore, the author

proposes to reorder the dimensions of the points based on their variance, so dimensions

with the highest variance are considered first when computing the distance between two

points. Hence, their cumulative distance is more likely to reach ϵ sooner, allowing the short-

circuiting of the distance computation, and thus to not consider the remaining dimensions.

Super-EGO has been since improved by Gallet and Gowanlock [37], as part of a CPU-GPU

distance similarity self-join algorithm. Among the changes, their version of Super-EGO

is capable of FP64 computation while performing better than Super-EGO proposed by
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Kalashnikov [57]. As such, further references to Super-EGO in this paper will refer to the

work conducted by Gallet and Gowanlock [37], rather than Kalashnikov [57].

Perdacher et al. [82] propose FGF-Hilbert, a parallel CPU distance similarity join

algorithm also based on an epsilon grid order, but using space-filling curves as their indexing

method. Using an EGO-sorted dataset, space-filling curves are used to determine, for each

query point, a range of consecutive candidate points in the dataset. The authors further

improve the performance by using the OpenMP API and low-level vectorized instructions,

making their solution highly optimized. Because FGF-Hilbert typically performs better

than Super-EGO, particularly in higher dimensions, it is considered a state-of-the-art CPU

distance similarity join algorithm. Because of some of its optimizations, FGF-Hilbert is

only capable of FP64 computation.

Gowanlock and Karsin [44] propose GDS-Join, a GPU algorithm for high-dimensional

distance similarity self-joins. Their optimizations related to the high-dimensional case in-

clude reordering the dimensions of the points based on their variance, so these with the

highest variance would be considered first when computing distances. Similarly to Super-

EGO presented above, this particularly pairs well with distance calculation short-circuiting.

Overall, dimensions with a higher variance are susceptible to increase the cumulative distance

more than dimensions with lower variance and are thus more likely to trigger short-circuiting

the distance calculation. They also propose to index the data in fewer dimensions than the

input dataset dimensionality, making their grid index efficient even in higher dimensions, as

the cost of searching their grid index is bound by the number of dimensions that are indexed.

Furthermore, as their source code is publicly available, it appears that new optimizations

have been added to the GDS-Join algorithm since the first publication, including the use of

Instruction-Level Parallelism (ILP) in the distance calculation, which significantly improves

the performance of the algorithm. Our experiments show that this newer version of GDS-

Join is more efficient than the published version [44]. Thus, we choose to use the newer

more efficient version, as it is fairer than comparing TED-Join with the original algorithm.
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5.3 Distance Calculations using Tensor Cores

We present our algorithm, TED-Join, that leverages TCs for Euclidean distance cal-

culations, and show how it is integrated into a distance similarity self-join algorithm. For

illustrative purposes, in this section we use 4× 4 matrices; however using the WMMA API

and FP64, matrix sizes are either 8× 4, 4× 8 or 8× 8.

5.3.1 Adapting the Euclidean Distance Formula

Using the Euclidean distance formula defined above (Equation 5.1) between two points

a and b in d dimensions, we can expand this formula as follows:

dist(a, b) =
√

(ad − bd)2 + . . .+ (a1 − b1)2 + 0. (5.2)

We observe that, from right to left, the computation consists of a series of multiply-and-

accumulate operations, where the distance in dimension i, computed as (ai − bi)
2 (hence

a multiplication of two terms) gets accumulated with the distance previously computed in

dimension i− 1, where 1 < i < d. Let a, b, c, d, e, f, g and h be eight points in d dimensions,

and where we want to compute the Euclidean distance between a, b, c, d and e, f, g, h. For

illustration purposes only, we will use 4× 4 matrices.

A

a1 a2 a3 a4

a1 a2 a3 a4

a1 a2 a3 a4

a1 a2 a3 a4

B

e1 e2 e3 e4

f1 f2 f3 f4

g1 g2 g3 g4

h1 h2 h3 h4

1. B = B × (−1.0) (CUDA cores)

2. C = A× I +B (TCs)

3. D = C × Ct +D (TCs)

Figure 5.1: Illustration of Euclidean distance calculations using TCs and Equation 5.2,
between a point a and four points e, f, g, h, and in four dimensions. This computation is
computed in blocking fashion four dimensions at a time. Matrix D contains the Euclidean

distance between a and the other points.

We illustrate in Figure 5.1 how we can compute Euclidean distances using Equation 5.1
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and more particularly its equivalent, Equation 5.2, using TCs. Matrix A contains a single

point a stored in row-major, while matrix B can contain multiple points (here e, f, g, h), and

is also row-major. To compute the difference between the coordinates, and to use TCs, we

first scale B by a factor −1.0, and we compute C = A×I+B, where I is the identity matrix.

C thus contains the difference between all coordinates of a and the points e, f, g and h, and

in all four dimensions (because matrices are 4 × 4). We then multiply C by its transpose,

Ct, which computes the Euclidean distance between point a and the points e, f, g, h, in the

current dimensions that we store in D. This calculation is computed in blocking fashion four

dimensions at a time.

A severe limitation of using the Euclidean distance shown in Equation 5.1 and represented

in Figure 5.1, is that it is only capable of computing the distance between one single point and

several other points. ConsiderD1,1 as the element in the first column of the first row of matrix

D. The result of the computation in Figure 5.1 is that D1,1 = dist(a, e), D2,2 = dist(a, f),

D3,3 = dist(a, g) and D4,4 = dist(a, h). Hence, out of the 4 × 4 = 16 results that matrix D

can store, only 4 correspond to actual Euclidean distances. Thus, while TCs have a higher

peak throughput than CUDA cores [73], only a fraction of the computation is actively used

to compute Euclidean distances, which yields inefficient resource utilization. Furthermore,

while we use 4× 4 matrices for illustration purposes, we see in Figure 5.1 that all matrices

used in the MMA operation need to have the same size, since the accumulator (C) is then

used for the multiplication. However, when using the WMMA API and FP64, these matrix

sizes are different and this solution can not be used. Consequently, we propose to use the

expanded and equivalent form of the Euclidean distance outlined in Equation 5.1, which we

detail as follows:

dist(a, b) =

√√√√ d∑
i=1

a2i − 2aibi + b2i . (5.3)
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Similarly to Equation 5.2, we can expand Equation 5.3, yielding the following equation:

dist(a, b) =

√√√√√a2d +

Tensor cores︷ ︸︸ ︷
(−2adbd + b2d)︸ ︷︷ ︸
CUDA cores

+ . . .+ a21 +

Tensor cores︷ ︸︸ ︷
(−2a1b1 + b21)︸ ︷︷ ︸
CUDA cores

. (5.4)

Using Equation 5.4, we emphasize which part of the computation will be carried out by

TCs and which part by the CUDA cores. Let Ti = −2aibi + b2i be the MMA operation done

by TCs. To compute dist(ai, bi), we need to calculate a2i + Ti. To use TCs, we need to

transform this into an MMA operation, computing either a2i × I + Ti, or Ti × I + a2i , where

I is the identity matrix. However, as aforementioned, when using FP64 the WMMA API

restricts us from reusing the accumulator from a previous MMA operation to be used in the

multiplication of another MMA operation, due to different matrix sizes. Furthermore, using

Equation 5.4, we can compute the Euclidean distance between the four points a, b, c, d, and

the four other points e, f, g, h at a time, using the method illustrated in Figure 5.2, and which

was not possible using Equation 5.1 (Figure 5.1). Finally, we observe that when computing

the Euclidean distance between multiple points, and as will be the case when computing

a distance similarity self-join for example, a part of the computation can be reused. The

squared coordinates of the points (a2i and b2i ), are often reused throughout the computation.

Indeed, the squared coordinates of a point are used for all the distance calculations with

other points and do not change throughout the computation. Thus, the squared coordinates

of the points can be precomputed to further improve the performance of the algorithm. As

we still consider the use of 4×4 matrices for illustrative purposes, we store in an array P the

squared and accumulated coordinates of each point, four coordinates at a time. Considering

that a is the first point, the element 0 of this precomputed array P is a21 + a22 + a23 + a24. For

a dataset V in d dimensions, this array represents a memory overhead of only |V | × ⌈d/4⌉.

Figure 5.2 presents our algorithm design for computing the Euclidean distance between

two sets of points, rather than between a single point and a set of points (Figure 5.1).

This method is based on Equation 5.3. Matrix A contains the first set of points (a, b, c, d),
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A

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

B

e1

e2

e3

e4

f1

f2

f3

f4

g1

g2

g3

g4

h1

h2

h3

h4

C

e2

e2

e2

e2

f 2

f 2

f 2

f 2

g2

g2

g2

g2

h2

h2

h2

h2

P ′

a2 a2 a2 a2

b2 b2 b2 b2

c2 c2 c2 c2

d2 d2 d2 d2

1. A = A× (−2.0) (CUDA cores)

2. T = A×B + C (TCs)

3. D = D + T + P (CUDA cores)

Figure 5.2: Illustration of Euclidean distance calculations using TCs and Equation 5.3,
between four points a, b, c, d and four points e, f, g, h, and in four dimensions. This

computation is computed in blocking fashion four dimensions at a time. Matrix D contains
the Euclidean distances between a, b, c, d and e, f, g, h.

while B contains the second set of points (e, f, g, h). Matrix C contains the sum of squared

coordinates of the points in B and are pre-computed, as explained above. Matrix P ′ contains

the sum of squared coordinates of the points in A. Our algorithm first scales matrix A, and

then computes T = A×B +C using TCs. We then use the CUDA cores to accumulate P ′,

as well as the result matrix D. Because C,D, and T are different sizes than A and B, we can

not use TCs to compute these operations, which is a limitation of the WMMA API when

using FP64. This computation is computed in blocking fashion four dimensions at a time.

The algorithm outputs matrix D which contains the Euclidean distance between a, b, c, d and

e, f, g, h, which corresponds to 16 distances, compared to only 4 when using the algorithm

shown in Figure 5.1. While we illustrate the computation using 4× 4 matrices, when using

the WMMA API, because D is an 8× 8 matrix, we can compute 64 distances instead of 8.

5.3.2 Tensor Cores for Distance Similarity Joins

As we outlined in Section 5.2.4, most of the distance similarity self-join algorithms in the

literature reduce the overall computational complexity by using an index data structure and,

compared to a brute-force approach, typically reduces the number of candidate points that

need to be refined per query point. In particular, the distance similarity self-join algorithm
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that we leverage here, GDS-Join, uses a grid index with cells of size ϵd. For each query

point in the dataset V , we thus search the grid indexing for neighboring cells, yielding a

set of candidate points for each of the query points, which are then refined by computing

the Euclidean distance between them and the query point. Because TED-Join and GDS-

Join use the same index, both algorithms yield the same candidate points to be refined

using distance calculations. This allows us to compare the performance of CUDA and TCs

in a self-consistent manner, where the performance differences are directly attributable to

distance calculations.

A characteristic of the grid index we are using is that all the query points from the same

cell share the same candidate points. This characteristic is particularly important, as it is

necessary to efficiently make use of Equation 5.4 (Figure 5.2). Indeed, the query points we

use in matrix A must compute their Euclidean distances, in matrix B, to the same set of

candidate points. Hence, the query points used in matrix A should come from the same grid

cell, as they share the same set of candidate points.

Another optimization used by Gowanlock and Karsin [44] is the batching of the execution.

Because the final result of the similarity self-join might exceed the memory size of the GPU,

the entire execution is split across multiple batches. As a positive side-effect, multiple batches

allow for hiding data transfers between the host and the GPU with computation. Indeed,

batches are computed by several parallel CUDA streams, where the data transfers of a stream

can overlap the computation of another stream. However, as a batch corresponds to a set

of query points to compute, we must ensure in our case that the query points we send in

a batch can be computed by our TCs algorithm. More specifically, when assigning query

points from a batch to a warp on the GPU, we must ensure that these query points belong

in the same grid cell and are not from different cells. Otherwise, we would be unable to use

the algorithm presented in Figure 5.2.

Using the WMMA API and FP64, only one combination of matrix sizes is available.

Namely, matrix A will contain up to four coordinates of up to eight query points, matrix B up
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to four coordinates of up to eight candidate points, matrix C the sum of squared coordinates

of up to eight candidate points, and matrix D up to sixty-four Euclidean distances. Because

TCs operate at a warp level using the WMMA API, we assign up to eight query points

to a warp, which will then compute the Euclidean distance to all the candidate points, as

determined by the use of the grid index. If the number of query points, candidate points,

or coordinates is insufficient to fill the remaining rows or columns of the matrices, we must

fill them with zeros. Because we process four dimensions at a time, up to ⌈d/4⌉ steps

are necessary to compute the Euclidean distance. Similarly to GDS-Join [44], we enable

distance calculations short-circuiting, which may happen after every MMA operation, i.e.,

for every 4 dimensions. However, all currently computed Euclidean distances between all the

query points and candidate points of the warp must short-circuit to trigger this optimization.

5.4 Experimental Evaluation

In this section, we detail the experimental evaluation we conducted. We start by compar-

ing our TCs algorithm and another optimized TCs algorithm to compute Euclidean distances.

We then compare our proposed algorithm TED-Join to other state-of-the-art distance sim-

ilarity self-join algorithms.

5.4.1 Datasets

We evaluate the algorithms using a wide range of real-world and synthetic datasets,

spanning several sizes, dimensionalities, and distributions. Synthetic datasets are generated

following either a uniform or exponential distribution, and their name is prefixed by either

Unif or Expo, respectively, followed by the dimensionality and the number of points (e.g.,

Expo3D2M is an exponentially distributed 3-D dataset containing 2M points). We summa-

rize the different synthetic datasets that we use in Table 5.1, and the real-world datasets

in Table 5.2. Gaia50M and OSM50M are the first 50M points of the original datasets, as

described by Gowanlock [40]. We choose to use different distributions to better evaluate the
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Table 5.1: Synthetic datasets used in the experimental evaluation.

Distribution d n
Uniform 2, 3, 4, 6, 8 10M
Exponential 2, 3, 4, 6, 8 2M, 10M

Table 5.2: Real-world datasets used in the experimental evaluation.

Dataset d n Dataset d n
SW2DA [69] 2 1.86M SW2DB [69] 2 5.16M
OSM50M [1] 2 50M Gaia50M [2] 2 50M
SW3DA [69] 3 1.86M SuSy [11] 18 5M
BigCross [3] 57 11M Songs [18] 90 515K

performance of TCs under different workloads: when a dataset is uniformly distributed, TCs

should all have a similar workload, while when a dataset is exponentially distributed, some

TCs will have a higher workload than other TCs.

We denote the selectivity as s, which represents the average number of neighboring points

found within ϵ of each query point when performing a similarity self-join, excluding each

query point finding itself. The selectivity is calculated as follows: s = (|R|− |V |)/|V |, where

|R| and |V | are the result set of the similarity self-join and dataset sizes, respectively. This

metric is used in the literature to quantify the complexity of the search for a given value of

ϵ: increasing ϵ results in more work to compute, and a higher selectivity.

5.4.2 Methodology

We conducted our experiments on the following platforms: Platform 1: 2× AMD Epyc

7542 CPU (2× 32 cores, 2.9GHz), 512 GiB of RAM, Nvidia A100 GPU; Platform 2: Intel

Xeon W-2295 CPU (18 cores, 3GHz), 256 GiB of RAM.

In this section, we use the distance similarity join application as a case study for the use

of TCs for Euclidean distance calculations. For completeness, we compare our algorithm to

other distance similarity join algorithms, including parallel CPU algorithms. However, this is

only one example application, and thus we also show brute-force CUDA vs. TC performance

as it may be more applicable to other algorithms.
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The algorithms TED-Join, GDS-Join, Super-EGO and FGF-Hilbert are config-

ured as follows:

• TED-Join: Our proposed TCs algorithm is executed on Platform 1, configured with

256 threads per block (8 warps), up to 8 query points per warp, and using distance

calculations short-circuiting, as explained in Section 5.3.2.

• GDS-Join: Parallel GPU algorithm proposed by Gowanlock and Karsin [44] and fur-

ther optimized since the original publication, executed in Platform 1. This algorithm is

configured with 256 threads per block, ILP = min(8, d) and uses distance calculations

short-circuiting, as presented in Section 5.2.4.

• Super-EGO: Parallel CPU algorithm proposed by Kalashnikov [57], optimized by

Gallet and Gowanlock [37] and executed on Platform 1 using 64 threads (the number

of physical cores on the platform).

• FGF-Hilbert: Parallel CPU algorithm proposed by Perdacher et al. [82], executed

on Platform 2 (the only platform supporting AVX-512, required for this algorithm)

and using 18 threads (the number of physical cores on the platform).

While we would have preferred to use a single platform to conduct all our experiments,

and thus have the same number of threads/cores for all CPU algorithms, prior experiments

we conducted showed us that both Super-EGO and FGF-Hilbert had a relatively poor

scalability. Hence, if we were able to run FGF-Hilbert using 64 threads/cores, as we did for

Super-EGO, the results we show in the following sections would not have been significantly

different. Furthermore, note that despite using fewer threads/cores, FGF-Hilbert typically

outperforms Super-EGO.

All the algorithms are using double precision (FP64) to compute, and are compiled using

NVCC v11.2 (for TED-Join and GDS-Join) or GCC (v8.5 for Super-EGO, and v9.4

FGF-Hilbert) using the O3 optimization.

115



During our experiments, many scenarios using FGF-Hilbert did not produce the correct

self-join results, which are consequently not included. We believe that the issues encountered

with FGF-Hilbert are due to the width of the vectorized instructions: 512-bits, or 8 FP64

values, which may not be working when d < 8. Furthermore, Super-EGO happened to fail

in several low-dimensional cases without a clear understanding of the reason, and we thus

also do not report the execution time of these experiments. However, we consider that the

successful experiments should be sufficient to accurately evaluate the performance of TED-

Join compared to the other algorithms. Finally, note that the four algorithms, TED-Join2,

GDS-Join [44], Super-EGO [57], and FGF-Hilbert [82], are publicly available.

5.4.3 Results: Comparison of Brute-force TC Approaches

We compare the performance of TCs and CUDA cores for performing Euclidean distance

calculations when using brute-force computation, which is O(|V |2). Here, we use the algo-

rithm TED-Join (TCs), to which we removed all optimizations, including indexing, and

compare it to a highly optimized MMA reference implementation by Nvidia [77], that lever-

ages the WMMA API similarly to TED-Join, denoted as WMMA-Ref. We selected this

implementation instead of a library such as cuBLAS 3 or CUTLASS 4 (with the latter built

upon the WMMA API), as it is the best direct comparison between approaches.

We outline two major differences between WMMA-Ref and TED-Join, as a conse-

quence of matrix size, as follows:

1. The matrix sizes are dependent on data dimensionality and impact performance [84,

86]. WMMA-Ref is designed and optimized for large MMA operations, whereas

TED-Join targets smaller matrices.

2. TED-Join uses small matrices, and thus computes many small 8×8 distance matrices

and leverages shared memory. In contrast, WMMA-Ref computes the entire |D|2
2https://github.com/benoitgallet/ted-join-hipc22
3https://developer.nvidia.com/cublas
4https://github.com/NVIDIA/cutlass
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distance matrix, thus requiring a much larger memory footprint. Consequently, when

using WMMA-Ref, and to be able to use it on large datasets that would exceed global

memory capacity, we store the result matrix using unified memory, which automatically

pages data between main and global memory. Furthermore, as cuBLAS and CUTLASS

work similarly to WMMA-Ref, they have the same drawback related to the use of

unified memory.

Figure 5.3 plots the performance of TED-Join and WMMA-Ref using brute-force

searches (i.e., without using an index) to compute Euclidean distance calculations on a 16-D

exponentially distributed synthetic datasets, spanning 211 to 217 points (we omit datasets

with other dimensionalities as we observed similar results). Note that 218 points overflows

main memory when using WMMA-Ref. We observe that the performance of WMMA-

Ref degrades quicker than TED-Join as the dataset size increases. We attribute these

results to the use of unified memory by WMMA-Ref, which is required to store the large

result matrix (|D| × |D|), and which is paged between GPU global and main memory when

its size exceeds global memory capacity. In addition to the poor performance attributed to

unified memory, using WMMA-Ref, which computes on large matrices and thus on the d

dimensions of a dataset at a time, limits the use of several optimizations, which are explored

in the following sections. Namely, this inhibits short-circuiting the distance calculations

when the cumulative distance between points exceeds ϵ.

We profile TED-Join and WMMA-Ref on the 217 points 16-D dataset (Figure 5.3).

With this dataset size, unified memory needs to be paged between global and main memory

throughout the execution. We measure that WMMA-Ref transfers 687.84 GB between the

L1 and L2 caches, and 503.61 GB between the L2 cache and global memory. In comparison

TED-Join transfers 558.57 GB and only 0.046 GB, respectively, as we rely on shared mem-

ory to store small (8×8) result matrices, rather than a large |V |×|V |matrix in global memory

like WMMA-Ref. This results in lower L1 and L2 hit rates: 19.35% using WMMA-Ref

vs. 50.32% using TED-Join for the L1 hit rate, and 72.45% vs. 99.99% for the L2 hit rate.
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Figure 5.3: Response time of our proposed algorithm TED-Join, and WMMA-Ref an
optimized MMA algorithm from Nvidia leveraging the WMMA API, using brute-force
searches to compute Euclidean distance calculations on a 16-D exponentially distributed

synthetic datasets.

In summary, the unified memory required by WMMA-Ref negatively affects performance

in the case of distance calculations, and thus TED-Join should be preferred.

5.4.4 Results: Optimized TC and CUDA Core Approaches

We investigate in this section the performance of TED-Join, as compared to other state-

of-the-art algorithms from the literature: GDS-Join, Super-EGO, and FGF-Hilbert.

5.4.4.1 Uniformly Distributed Datasets

We start this result section with uniformly distributed synthetic datasets, detailed in

Table 5.1. We select this distribution as all the query points will have a similar number

of candidate points to refine, allowing us to evaluate the performance of TCs when their

workload is relatively uniform.

We show in Figure 5.4 the execution time of TED-Join compared toGDS-Join, Super-

EGO, and FGF-Hilbert on a selection of uniformly distributed synthetic datasets. In

these cases, we can see that Super-EGO is consistently performing worse than all of the

other algorithms, except on the Unif8D10M dataset when ϵ = 0.08 (Figure 5.4(d)). Fur-

thermore, we observe that TED-Join performs similarly or better than GDS-Join in most
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Figure 5.4: Response times of the TED-Join, GDS-Join, Super-EGO, and
FGF-Hilbert on a selection of uniformly distributed synthetic datasets. s is in the range
(a) 282–6978, (b) 71–8449, (c) 7–4295 and (d) 0–10888. The legend in (a) corresponds to

all subfigures. d ∈ {2, 4, 6, 8}, n = 10M.

cases, except on Unif8D10M when ϵ < 0.32. From these results, it seems that TED-Join

performs similar to GDS-Join when ϵ is low, and therefore when the workload is low as

well, potentially indicating an overhead from using TCs. But when ϵ increases, and thus the

workload, the higher computational throughput of TCs outperforms the CUDA cores used

by GDS-Join.

We also observe that the speedup is the highest on the 2-D and 4-D datasets since all 2

or 4 dimensions can be computed at once using TCs, as we compute 4 dimensions at a time.

The speedup is the lowest on the 6-D datasets since we need to compute the distances in

two iterations (as many as for the 8-D datasets), but where 2 dimensions are zeros and thus

that the CUDA cores in GDS-Join do not have to compute.
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5.4.4.2 Exponentially Distributed Datasets

In this section we present the results on the same algorithms as in Section 5.4.4.1 on the

exponentially distributed synthetic datasets, detailed in Table 5.1. We select this distribution

as it creates a large workload variance between the query points, where some query points

may have many candidate points to refine, and other query points very few, which allows us

to evaluate the performance of the TCs when their workload varies.

Figure 5.5 reports the execution time of TED-Join compared to GDS-Join, Super-

EGO, and FGF-Hilbert on a selection of exponentially distributed synthetic datasets.

Note that FGF-Hilbert did not run correctly on the 2-D and 6-D datasets (Figures 5.5(a)

and (c)). In these experiments, TED-Join typically performs similarly or better than

GDS-Join, particularly as ϵ increases. Super-EGO is consistently outperformed by the

other algorithms, while FGF-Hilbert performs the best on the Expo4D10M dataset (Fig-

ure 5.5(b)), but is outperformed by both TED-Join and GDS-Join on the Expo8D10M

dataset (Figure 5.5(d)). Because these datasets are exponentially distributed, the workload

throughout the computation of the similarity self-join can vary a lot. The query points in

the denser regions of the dataset will have many candidate points to refine, and the query

points in the sparse regions of the dataset may have only a few candidate points. Hence,

and despite a highly varying workload, TED-Join remains more efficient in most cases com-

pared toGDS-Join and all compared algorithms in general, particularly in lower dimensions

(2 ≤ d ≤ 4).

5.4.4.3 Real-World Datasets

We present in this section the results of TED-Join, GDS-Join, Super-EGO and

FGF-Hilbert on a selection of the real-world datasets (Table 5.2), as shown in Figure 5.6.

TED-Join and GDS-Join perform very similarly, particularly on the higher dimensional

datasets (Figures 5.6(b)–(d)), while TED-Join outperforms GDS-Join on the SW3DA

dataset as ϵ increases (Figure 5.6(a)). FGF-Hilbert also performs quite similarly to TED-
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Figure 5.5: Response times of TED-Join, GDS-Join, Super-EGO, and FGF-Hilbert
on a selection of exponentially distributed synthetic datasets. s is in the range (a)

320–7834, (b) 15–7414, (c) 0–1658 and (d) 0–1210. The legend in (a) corresponds to all
subfigures. d ∈ {2, 4, 6, 8}, n = 10M.

Join and GDS-Join, while Super-EGO is often outperformed by the other algorithms.

Overall, these experiments show that TED-Join and GDS-Join may perform similarly as

dimensionality increases, while TED-Join yields an advantage in lower dimensions (Fig-

ure 5.6(a)), as we observed in previous Figures 5.4 and 5.5. These experiments show us that

in higher dimensions (Figures 5.6(b)–(d)), TED-Join may not yield an advantage compared

to GDS-Join.

5.4.5 Discussion: When Tensor Cores Should Be Employed

We summarize the results of TED-Join as compared to the Super-EGO [37], FGF-

Hilbert [82], andGDS-Join [44] algorithms that we obtained across experiments, including

those that were omitted due to space constraints. The experiments covered a wide range of
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Figure 5.6: Response times of TED-Join, GDS-Join, Super-EGO, and FGF-Hilbert
on a selection of real-world datasets (Table 5.2). s is in the range (a) 163–5373, (b) 5–1090,

(c) 1–1104 and (d) 127–998. The legend in (a) corresponds to all subfigures.

data dimensionalities, sizes, and distributions, resulting in an insightful picture of the overall

performance of using TCs in TED-Join compared to the use of CUDA cores in GDS-Join.

We report the speedup of TED-Join over the Super-EGO, FGF-Hilbert, and GDS-

Join algorithms in Figures 5.7(a) and (b), and Figure 5.8, respectively. We also report the

L1 and L2 cache hit rates of GDS-Join and TED-Join in Table 5.3, and the average and

maximum speedups of TED-Join over Super-EGO, FGF-Hilbert, and GDS-Join in

Table 5.4.

Figure 5.7(a) plots the speedup of TED-Join over the CPU algorithm Super-EGO [37,

57]. We observe that TED-Join consistently achieves a speedup > 1, with an average of

5.00× and a maximum of 27.22×. Thus, we believe that there is no clear disadvantage to

using TED-Join over Super-EGO, regardless of the dimensionality, dataset distribution,
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Figure 5.8: The same as for Figure 5.7, but plotting the speedup of TED-Join over
GDS-Join.

or size.

Figure 5.7(b) plots the speedup of TED-Join over the CPU algorithm FGF-Hilbert [82].

Because many of our experiments could not be correctly conducted using the FGF-Hilbert

algorithm, it makes it harder to draw a clear conclusion regarding the performance TED-
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Table 5.3: L1 and L2 cache hit rates of GDS-Join and TED-Join on a selection of
exponentially distributed synthetic datasets (2 ≤ d ≤ 16, n = 2M) and real-world datasets

(SW3DA and SuSy), measured using the Nvidia Nsight Compute profiler.

GDS-Join TED-Join
Dataset L1 L2 L1 L2
Expo2D2M 71.55% 97.85% 66.40% 98.11%
Expo4D2M 89.89% 95.60% 67.20% 97.65%
Expo8D2M 90.53% 97.15% 45.76% 66.23%
Expo16D2M 97.27% 99.84% 52.15% 57.27%
SW3DA 68.84% 97.62% 54.70% 94.43%
SuSy 92.13% 86.91% 38.00% 53.50%

Table 5.4: Average and maximum speedup of TED-Join over Super-EGO,
FGF-Hilbert, and GDS-Join across experiments reported in Figures 5.7 and 5.8.

CPU GPU
Super-EGO FGF-Hilbert GDS-Join (d ≤ 4)

Average 5.00× 2.09× 1.07× (1.28×)
Maximum 27.22× 9.46× 2.23× (2.23×)

Join compared to FGF-Hilbert. However, in the successful experiments, our TCs solution

achieved an average speedup of 2.09× with a maximum of 9.46×, and the majority of the

speedups are above 1. Hence, and similarly to Super-EGO, there is no clear disadvantage

of using TED-Join over FGF-Hilbert.

Observing the speedup of TED-Join over the CUDA core algorithm GDS-Join (Fig-

ure 5.8), we achieve the best performance when d ≤ 4, and is best on exponentially dis-

tributed synthetic and real-world datasets. However, as the dimensionality d increases, this

speedup decreases, resulting in an average speedup of only 1.07×, but achieving a maximum

of 2.23× on the Expo3D2M dataset. If we only consider datasets where d ≤ 4, TED-Join

achieves an average speedup of 1.28× over GDS-Join. Regarding the relatively low speedup

in higher dimensions, TCs are designed for large matrix multiplications, where data can be

reused when computing tiles of the resulting matrix. In the case of TED-Join, we are

unable to reuse such data, thus limiting the performance. Additionally, we measure and

compare the L1 and L2 cache hit rates of GDS-Join and TED-Join (Table 5.3). While
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GDS-Join consistently achieves high cache hit rates, as the dimensionality increases, the

cache hit rate using TED-Join decreases significantly. This explains why the speedup of

TED-Join over GDS-Join decreases with increasing dimensionality (Figure 5.8).

From these results, we conclude that TCs should be used when the dimensionality is low

(2 ≤ d ≤ 4). Furthermore, there are cases where the dimensionality does not evenly divide

by 4 (the dimension of the matrices as defined by the WMMA API for FP64). In total, ⌈d/4⌉

MMA operations are needed to compute distance calculations, meaning that an additional

MMA operation needs to be performed for cases where d mod 4 ̸= 0, which performs excess

work. For example, because 6-D datasets are stored as 8-D datasets, where the last two

dimensions are filled with zeros, TCs cannot achieve peak performance.

In summary, TCs should be used under the following scenarios instead of the reference

implementations on their respective architectures:

• Compared to using CUDA cores, TCs should be used on low-dimensional datasets

(2 ≤ d ≤ 4).

• There is no drawback of using TCs over multi-core CPUs.

5.5 Conclusion and Future Work

In this paper, we presented a novel approach to computing Euclidean distances leveraging

TCs on Nvidia GPUs. TCs are designed solely for Matrix Multiply-Accumulate operations,

and yield a much higher peak throughput than CUDA cores for this operation [73]. While

TCs have been extensively used in fields such as machine learning, their usage remains

very limited for more general-purpose applications. Hence, to our knowledge, this paper

presents the first use of TCs for FP64 Euclidean distance calculations, where FP64 TCs

computation has only been possible using the Ampere generation of Nvidia GPUs. This

makes our algorithm suitable for scenarios where precise computation using FP64 is required.

As such, our algorithm can provide the foundation for improving the performance of other
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data analysis applications where distance calculations are used (e.g., distance similarity

searches, kNN, and DBSCAN [32, 37, 41, 44, 57, 82]). In these cases, our TC GPU kernel

can be adapted to refine candidate points independently of the index that is used.

Comparison to tensor algorithms: we compared TED-Join to a reference MMA

implementation, WMMA-Ref, from Nvidia [77], where no optimizations (including an

index) were used. We find that TED-Join outperforms WMMA-Ref, because the latter

requires unified memory to store a |V | × |V | distance matrix. Libraries such as cuBLAS

and CUTLASS have the same drawbacks as WMMA-Ref, and are thus also unsuitable for

moderately sized input datasets.

Comparison to similarity search reference implementations: we compared TED-

Join to the GPU algorithm GDS-Join [44]. Despite an average speedup of 1.07× over

GDS-Join when 2 ≤ d ≤ 90, we achieve a maximum speedup of 2.23× over this algorithm.

We find that TED-Join yields the best performance when d ≤ 4 with an average speedup

of 1.28× over GDS-Join. Because TED-Join and GDS-Join use the same index, this

performance improvement is a direct result of employing TCs. While the maximum speedup

is expected to be 2× due to the maximum throughput of TCs compared to CUDA cores [73],

we achieve a lower speedup on average because we rely on operations using CUDA cores. As

described in Section 5.3.1, combining CUDA and TCs to compute FP64 Euclidean distances

is required due to the restricted matrix sizes when using the WMMA API and FP64.

Compared to the multi-core CPU algorithms Super-EGO [57] and FGF-Hilbert [82],

we find that TED-Join typically outperforms these algorithms.

Future work includes, investigating cache and shared memory efficiency, particularly for

higher dimensions, modeling TC performance to determine in which scenarios they should

be leveraged instead of CUDA cores, using other floating point precisions available for TCs,

and incorporating our TC GPU kernel into other algorithms, such as kNN [41], and particle

simulations such as those in molecular dynamics [28].
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Chapter 6

Optimizing Euclidean Distance Calculations in Low Precision

with GPU Tensor Cores

Abstract

Euclidean distance calculations are used in data analysis algorithms and many scientific

applications. As such, they are often a performance bottleneck in numerous algorithms and

applications, and significant research has proposed methods to avoid performing distance

calculations. GPU Tensor Cores (TCs) are purposefully designed to compute Matrix Mul-

tiplication and Accumulation (MMA) operations and are much faster at this than general-

purpose GPU cores. TCs have been extensively used in machine learning and other related

fields; however, they have not been extensively used in other general-purpose algorithms.

In this paper, we present a Euclidean distance algorithm that leverages TCs. Our TC al-

gorithm uses low precision, and can thus take advantage of TCs that are commonly found

on consumer-grade and high-end GPUs. In particular, we investigate half precision multi-

plication and half or single precision accumulation. We observe that accumulating in half

precision instead of single precision slightly improves performance while keeping a high level

of accuracy. Furthermore, we observe that in a real-world application that uses Euclidean

distances, our TC algorithm consistently outperforms a state-of-the-art GPU algorithm us-

ing CUDA cores across a broad range of datasets, achieving a maximum speedup of 5.38×

using single precision accumulations, and 6.45× when compared to double precision.
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6.1 Introduction

Euclidean distance calculations are a fundamental operation in many data analysis algo-

rithms such as k-means, nearest neighbor searches or clustering [22, 32, 57, 82]. These cal-

culations are typically computationally intensive, especially when processing large datasets

or those in high dimensions.

Graphics Processing Units (GPUs) have been extensively used to improve the perfor-

mance of Euclidean distance calculations [22, 56]. Tensor Cores (TCs) are an Application-

Specific Integrated Circuit (ASIC) available on some GPUs, and are explicitly designed to

compute Matrix Multiplication and Accumulation (MMA) operations. Given four matrices

A,B,C and D, TCs compute D = A×B+C, where C and D can be the same matrix. Due

to their high specificity, TCs yield a greater computational throughput computing MMA

operations than general-purpose CUDA cores. Most of the literature uses TCs to improve

the performance of machine learning applications, or more generally, applications requiring

linear algebra kernels [61]. Nonetheless, any algorithm that can be expressed as MMA oper-

ations can leverage TCs to harness their power, with possible significant performance gains

over general-purpose (CUDA) cores.

In this paper, we propose an algorithm to compute Euclidean distances using TCs. In

particular, our algorithm focuses on lower precision data types, i.e., FP16 multiplications and

FP16/FP32 accumulations. We use the Warp Matrix Multiply and Accumulate (WMMA)

API [8] to leverage TCs. We evaluate our proposed algorithms in terms of execution time,

but also in terms of accuracy. Finally, we demonstrate the performance of our algorithm in

two contexts: (1) in a brute-force scenario that only computes Euclidean distances; and, (2)

in an example algorithm, the distance similarity self-join, which is employed in many data

analytic tasks. The distance similarity self-join algorithm finds all pairs of points, (a, b) from

a given dataset V in d dimensions that are within a user-defined distance threshold ϵ of each

other.

The paper most related to our work is that by Gallet and Gowanlock [38], which proposed

129



an FP64 Euclidean distance algorithm leveraging TCs. Because their work does not explore

lower precision data types, and because they report modest performance gains in higher di-

mensions compared to CUDA cores, we believe it is important to tackle these shortcomings.

Additionally, their FP64 TCs algorithm is only capable of running on a very few number

of GPU architectures [73, 76], whereas our solution can be executed on any Nvidia GPU

equipped with TCs [71, 72, 73, 76]. Hence, we base a part of this work on the work con-

ducted by Gallet and Gowanlock [38], which we further optimize. Furthermore, we propose a

more in-depth evaluation of TCs, including a comparison of performance and accuracy. For

consistency, we use the same notation and several concepts regarding TCs as in their paper.

Thus, we direct the reader to their paper for additional details on computing Euclidean

distances with TCs. We summarize our contributions as follows:

• We propose Mixed-precision Euclidean Tensor cores Algorithm (META), a novel algo-

rithms that optimizes Euclidean distance computations using low precision data types

(FP16 and FP32) on GPU TCs.

• We propose two variants of META: META-1Q, capable of computing the distance

between 1 and 16 points; and META-16Q, capable of computing the Euclidean dis-

tance between 16 points and 16 other points per warp. META-1Q only makes use

of TCs, while META-16Q uses a mix of CUDA and TCs to further improve the

performance of the algorithm.

• We optimize the work conducted by Gallet and Gowanlock [38] by reordering the input

dataset, greatly improving the memory accesses efficiency and overall performance.

• We show the performance of using META to compute Euclidean distances compared

to using CUDA cores, and we also demonstrate the performance of using META when

included in a distance similarity self-join algorithm and compare it to the performance

of a state-of-the-art algorithm that uses CUDA cores. We find thatMETA consistently
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outperforms the CUDA core algorithm on a broad range of datasets spanning different

distributions, sizes, and dimensionalities.

• We measure the accuracy of META compared to CUDA cores. We observe the phe-

nomenon of catastrophic cancellation [26, 39], which is a loss of precision occurring in

some floating point operations and yielding incorrect results.

The paper is organized as follows: we present necessary background information in Sec-

tion 6.2. We present in Section 6.3 our main algorithm, META, and its two variants:

META-1Q and META-16Q, as well as their integration into the distance similarity self-

join algorithm. We evaluate the performance and accuracy of META in Section 6.4, then

conclude the paper and propose future research paths in Section 6.5.

6.2 Background

6.2.1 Problem Statement

Let a and b be two points in d dimensions, where ai is the i
th coordinate of point a, where

i = 1, . . . , d. The Euclidean distance between a and b is commonly defined as follows:

dist(a, b) =

√√√√ d∑
i=1

(ai − bi)2. (6.1)

Additionally, Gallet and Gowanlock [38] redefined the Euclidean distance calculation such

that it can be computed on TCs, as follows:

dist(a, b) =

√√√√ d∑
i=1

a2i − 2aibi + b2i . (6.2)
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6.2.1.1 Distance Similarity Self-join

We take the distance similarity self-join as a case-study application for our Euclidean

distance algorithm. Given a dataset V in d dimensions, the distance similarity self-join

algorithm finds all the pairs of points (a, b), where a, b ∈ V , and where dist(a, b) ≤ ϵ. In this

paper, dist() uses the Euclidean distance defined above as the measuring function. Given

a query point a, finding all the points ∈ V that are within ϵ from a is called a distance

similarity search. By default, to find all points within ϵ from a, we calculate the distance

between a and all the other points in V , yielding an overall complexity of O(|V |).

6.2.2 Tensor Cores (TCs)

GPU TCs are an Application-Specific Integrated Circuit (ASIC), that are specifically

designed to compute Matrix Multiplication and Accumulation (MMA) operations. TCs are

made to compute the operation D = A × B + C, where A,B,C and D are matrices, and

where the accumulator matrices C and D may be the same. In this paper, we choose to use

the WMMA API [8] from Nvidia to leverage TCs. This API yields programmatic access to

matrix fragments, which represents matrices in memory and store their content in registers

accessible to threads in a warp. In particular, the API provides several fragment-related

functions, including filling a fragment with a given value, copying data from global memory

to a fragment and vice versa, and computing an MMA operation. Compared to (general

purpose) CUDA cores, TCs have a much greater computational throughput when computing

MMA operations. For instance, using an Nvidia A100 GPU [73] and FP16 computation, TCs

have a theoretical computational throughput 4× greater than CUDA cores.

Focusing on low precision Euclidean distance calculations, we use TCs to compute the

multiplication step of the MMA operation using FP16, and the accumulation step using

either FP16 or FP32. We will compare the performance and accuracy of both options in

the experimental evaluation section of this paper (Section 6.4). Using the WMMA API, the

available matrix sizes are either: 16× 16 for all matrices A,B,C and D, or 8× 32 for either
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A or B, and 8 × 8 for C and D. In this paper, we elect to use 16 × 16 matrices, as it is

required for our META-1Q algorithm.

6.2.3 Tensor Cores in the Literature

As mentioned in Section 6.1, the literature on TCs is heavily centered on machine learning

or, more generally, linear algebra [61], but rarely other types of computation [4, 27, 56, 63,

67]. We highlight in this section a few papers leveraging TCs for more general-purpose

computations, similar to what we are doing in this paper.

Dakkak et al. [27] leverage TCs to compute reductions and scans using the WMMA API.

The reduction algorithm multiplies a matrix containing ones in the first row and zeros in the

remaining rows, with another matrix containing the values to reduce. This matrix multipli-

cation is then accumulated with the matrix containing the result from previous reductions.

The scan algorithm uses a triangular matrix that contains ones and the remainder are zeros,

which works similarly to the reduction algorithm. Compared to state-of-the-art algorithms

using TCs, the reduction algorithm achieves a speedup of 100×, and the scan algorithm a

speedup of 3×.

Ji and Wang [56] propose a DBSCAN algorithm using TCs. TCs are essentially used to

compute distance matrices between points that are likely to form a cluster. Major differences

with this paper are that we use the Euclidean distance, whereas Ji and Wang use the cosine

similarity, and we use an index structure while Ji and Wang do not. TCs are used to compute

reductions to determine if points belong to a cluster or not. Compared to CUDA cores, their

solution using TCs achieves a speedup of up to 2.61×.

Ahle and Silvestri [4] propose a theoretical method to use TCs to compute similarity

searches, using either the Hamming or squared L2 distances or the cosine similarity. They

also propose to use the Local Sensitivity Hashing (LSH) method to reduce the overall com-

plexity, similar to using an index as used by other similarity search algorithms [38, 44, 57, 82].

However, LSH is typically an approximate method, contrary to the other algorithms afore-
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mentioned.

6.2.4 Case Study: Distance Similarity Searches

We discuss in this section several state-of-the-art parallel distance similarity self-join

algorithms [37, 44, 57, 82] that use Euclidean distance calculations to compute the similarity

searches. All of these algorithms use an indexing data structure to prune the number of

distance calculations, which is a commonly used optimization [21, 22]. When using an

index, it is first searched to yield a set of candidate points for each query point. The set

of candidate points is then refined using distance calculations to keep pairs of query and

candidate points that are within ϵ of each other. Note that we include CPU algorithms as a

matter of exhaustiveness, despite not including them in the experimental evaluation. Indeed,

these algorithms have been greatly outperformed by the other GPU algorithms, and are also

not capable of computing using FP16, which is the topic of this paper.

6.2.4.1 Parallel CPU Algorithms

Kalashnikov [57] proposes the parallel CPU algorithm Super-EGO, which computes

distance similarity joins. The performance of this algorithm relies on a grid index with ϵ-

wide grid cells, that allow to efficiently prune the candidate points to refine. Furthermore,

the features of the points are reordered based on their decreasing variance which, when

computing the distance between the points, allows to short-circuit the computation and not

consider all dimensionalities. While still considered a state-of-the-art CPU parallel algorithm

for distance similarity joins, it is not capable to compute using FP16 data types, and we will

thus not include it in our experiments.

Perdacher et al. [82] propose another parallel CPU algorithm, FGF-Hilbert, to compute

distance similarity joins. They use a dataset sorted based on the points coordinates and

space-filling curves are used as an index to determine, for each query point, a range of

consecutive candidate points to refine. The algorithm is parallelized using OpenMP, as
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well as low-level vectorized instructions. FGF-Hilbert is a state-of-the-art parallel CPU

algorithm as well, which is also not capable to compute using FP16 data types. FGF-

Hilbert will thus not be included in our experiments.

6.2.4.2 GPU Algorithms

Gowanlock and Karsin [44] propose the state-of-the-art distance similarity self-join GPU

algorithm GDS-Join, which uses CUDA cores. GDS-Join is a high-dimensional distance

similarity self-join algorithm that uses CUDA cores, and was shown to consistently out-

perform Super-EGO and FGF-Hilbert. They use similar dimension reordering and

short-circuiting techniques as Super-EGO, and propose to index fewer dimensions than the

dataset’s dimensionality d. This technique helps avoid the curse of dimensionality, where

searching an index is exponentially more expensive as the number of indexed dimensions

increases. GDS-Join also uses Instruction-Level Parallelism (ILP) to further improve the

performance of Euclidean distance calculations. We modify this algorithm to make it capable

to compute using FP16 and mixed FP16-FP32 precisions.

6.2.5 TCs Distance Similarity Searches

Gallet and Gowanlock [38] propose TED-Join, a GPU algorithm that uses TCs to com-

pute Euclidean distances, and that they incorporate into GDS-Join to create a distance

similarity self-join algorithm using TCs instead of CUDA cores. As such, their algorithm is

very similar to GDS-Join presented above. They compare their algorithm to Super-EGO

and FGF-Hilbert, as well as to GDS-Join. While TED-Join consistently outperforms

Super-EGO and FGF-Hilbert, TED-Join outperforms GDS-Join only when the di-

mensionality is low (d ≤ 4), making TED-Join a low-dimensional algorithm. This algorithm

is the first to propose using TCs to compute Euclidean distances, and among the first papers

to use TCs for FP64 general-purpose computations. However, their algorithm exclusively

uses FP64, leaving FP16/32 unexplored. As such, we base our algorithm META upon their

135



A
a1 a2 a3 a4

a1 a2 a3 a4

a1 a2 a3 a4

a1 a2 a3 a4

B
e1 e2 e3 e4

f1 f2 f3 f4
g1 g2 g3 g4

h1 h2 h3 h4

A′

a1 a2 a3 a4

b1 b2 b3 b4
c1 c2 c3 c4

d1 d2 d3 d4

P

e2

e2

e2

e2

f 2

f 2

f 2

f 2

g2

g2

g2

g2

h2

h2

h2

h2

Q

a2 a2 a2 a2

b2 b2 b2 b2

c2 c2 c2 c2

d2 d2 d2 d2

META-1Q:

1. B = B × (−1.0) (CUDA)
2. C = A× I +B (TCs)

3. D = C × Ct +D (TCs)

META-16Q:

1. A′ = A′ × (−2.0) (CUDA)
2. T = A′ ×Bt +Q (TCs)

3. D = D + T + P (CUDA)

Figure 6.1: Illustration of Euclidean distance calculations for the META-1Q and
META-16Q algorithms presented below (Sections 6.3.1 and 6.3.2). Reproduced and

modified from Gallet and Gowanlock [38]. While we show 4× 4 matrices for illustration
purposes, META-1Q and META-16Q use 16× 16 matrices.

work, which we propose to extend in this paper.

6.3 Mixed-Precision Euclidean Tensor cores Algorithm (META)

We present in this section the two different variants that compose META: META-

1Q, capable of computing Euclidean distances between 1 and 16 points; and META-16Q,

capable of computing Euclidean distances between 16 and 16 other points, in 16 dimensions

at a time in both cases. For illustrative purposes, we will show in this section 4×4 matrices,

while META uses 16 × 16 matrices. Part of this work is based upon the TCs algorithm

(TED-Join) proposed by Gallet and Gowanlock [38]. We expand the scope of their work

by addressing Euclidean distances as computed using TCs supporting lower floating point

precision in addition to optimizing the data layout of their algorithm. For consistency, we

use the same notation as in their paper [38].
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6.3.1 META-1Q Algorithm

The first variant of META that we propose is META-1Q, which uses the common

Euclidean distance formula given in Equation 6.1. META-1Q requires square matrices;

thus, Gallet and Gowanlock [38] were not able to provide a similar algorithm using FP64

because of the matrix size restrictions [78]. We illustrate the META-1Q algorithm in

Figure 6.1.

As mentioned above, TCs can only compute D = A × B + C, whereas the formula in

Equation 6.1 consists of a difference first. We first scale matrix C by a factor −1.0 and use

matrix A or B as the identity matrix. Thus, the MMA operation will consist of computing

A − C or B − C. Let a, b, c, d, e, f, g and h be eight points in d dimensions, and where

we want to compute the Euclidean distance between a, b, c, d and e, f, g, h. Because of the

difference in the computation, that is applied on pair-wise coordinates, only 1 point from

one set and the 4 points from the other set can be used at a time. We use matrix D to store

the results, and we first fill matrix A with 4 coordinates of the point a in row-major order,

replicated across each row of the matrix. We set matrix B as the identity matrix, and we fill

matrix C with 4 coordinates of points e, f, g, h in row-major order, which we then scale by

a factor −1.0, and compute an MMA operation on matrices A,B and C which will compute

C = A− C.

The next step of the computation is squaring the difference that was calculated above,

as well as accumulating with the previously computed dimensions. Thus, we take the result

from C, which contains the difference between the coordinates of the point a and the points

e, f, g, h, and we fill matrices A and B, in row-major and column-major orders respectively.

We then compute D = A×B+D, which consists of computing D = C×Ct+D. At the end

of the computation, the matrix D contains the Euclidean distance between a and e, f, g, h,

which is stored in the diagonal of the matrix.

To summarize, this method only computes 4 Euclidean distances, out of the 16 results

that D can store. Using the WMMA API and 16 × 16 matrices, META-1Q is capable of
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computing the Euclidean distance between 1 and 16 points in 16 dimensions at a time per

active warp. When using FP16 for multiplication, both FP16 and FP32 can be used in the

accumulation phase.

6.3.2 META-16Q Algorithm

The second algorithm we present in this section is META-16Q. This algorithm, contrary

to META-1Q, is capable of computing the Euclidean distances between 16 points and 16

other points in 16 dimensions at a time per active warp. In comparison, this method is

capable of computing up to 16 × 16 = 256 Euclidean distances, compared to 16 using

META-1Q. We illustrate the META-16Q algorithm in Figure 6.1.

META-16Q is similar to the algorithm proposed by Gallet and Gowanlock [38], but uses

FP16/FP32 instead of exclusively using FP64. Hence, it also uses the expanded formula of

the Euclidean distance, that we give in Equation 6.2. Furthermore, we also precompute the

a2 and b2 parts of the formula, as they are reused many times throughout the computation.

We define these as the precomputed squared coordinates and correspond to the squaring of

a coordinate and its accumulation to other squared coordinates of a point, in groups of 16

(for illustrative purposes only, here in groups of 4).

Still taking two sets of four points a, b, c, d and e, f, g, h in d dimensions, using META-

16Q we can compute the 4 × 4 = 16 Euclidean distances at the same time. Hence, we fill

matrix A with 4 coordinates of the points a, b, c, d in row-major, matrix B with 4 coordi-

nates of the points e, f, g, h in column-major, and matrix C with the precomputed squared

coordinates of e, f, g, h in row-major order, that are replicated across all rows of C. We

then scale matrix A by a factor −2.0 using CUDA cores, and compute the MMA opera-

tion T = A × B + C. At this stage, we have computed the equivalent of −2ab + b2 from

Equation 6.2. Hence, we need to accumulate the precomputed squared coordinates of points

a, b, c, d, as well as the Euclidean distances of previous dimensions. While we could use TCs

for these operations instead of CUDA cores, it would require much more work. In particular,
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we would have to compute a full MMA operation instead of only computing an accumula-

tion. Hence, we fall back to the CUDA cores for this step. At the end of the computation,

we have stored in memory the 4× 4 = 16 Euclidean distances we wanted to compute. Using

the WMMA API, we would compute up to 16× 16 = 256 Euclidean distances.

6.3.3 META-16Q and FP16

As mentioned in Section 6.3.1, META-1Q is capable of combining FP16 multiplications

with either FP16 or FP32 accumulations. However, we observed that this was not the case

for the META-16Q algorithm, where we are forced to accumulate using FP32 exclusively.

When using FP16 only, we detected that catastrophic cancellation was occurring [26, 39],

which is a numerical error that we describe as follows.

Catastrophic cancellation occurs when subtracting two numbers that are very close to

each other, or when adding them using different signs (one positive and one negative), which

leads to a loss of precision in the final result. The loss of precision can be further amplified

when using numbers that are the product of floating-point operations, which are well-known

to introduce rounding errors.

In the case of the META-16Q algorithm and using Equation 6.2, we compute −2ab+a2

using the TCs, where a2 is already precomputed. In general, we compute an addition using

two different signs: −2ab on the left and a2 on the right, which is subject to catastrophic

cancellation. Additionally, precomputing a2 may have introduced rounding errors from the

multiplication if not enough bits were used (e.g., if using FP16), and multiplying −2a and b

might also introduce rounding errors since we are forced to use FP16. Thus, this step of the

computation is adding two numbers with different signs, that might already carry rounding

errors. Furthermore, if the Euclidean distance is used for distance similarity searches to

find points that are close to a given query point, the coordinates of those points are very

likely to be numerically similar. As mentioned above, the subtraction of two close numbers

is susceptible to catastrophic cancellation. Because −2ab < a2, the result of this step tends
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to be negative. Thus, when adding the result of this operation with b2, as outlined in

Equation 6.2 we are, once more, adding two numbers with opposite signs that might carry

rounding errors, and that are very likely numerically similar.

To avoid this phenomenon of catastrophic cancellation, we limit the amount of rounding

errors that are introduced by accumulating using FP32 instead of FP16. Because Gallet

and Gowanlock [38] are using FP64, they most likely did not observe this phenomenon and,

therefore, did not mention this problem in their paper. We believe that this phenomenon

is relatively obscure and yet of great importance, as it can make the result of a distance

calculation completely incorrect and unusable. Note that, while we also likely subtract close

numbers when using the META-1Q algorithm, these numbers are actual coordinates, have

not been rounded from floating-point computation, and are of the same sign. Hence, this

algorithm does not suffer from catastrophic cancellation, and it is safe to exclusively use

FP16.

6.3.4 META Memory Layout

The TCs algorithm proposed by Gallet and Gowanlock [38] often suffers from very low

cache hit rates, which is due to how they manage the layout of their dataset. They keep

the dataset unordered and, when computing Euclidean distances for similarity searches while

using an index to find the candidate points to refine, these candidate points might spread out

greatly. The function to copy data from memory to a fragment requires a starting address,

as well as a padding between a line of consecutive elements to copy. When using 16 × 16

matrices, this function copies 16 elements, pads the memory address, copies 16 elements, etc.

When computing brute-force searches, then the candidate points can be processes iteratively

in the order they are stored in memory. However, when computing similarity searches while

using an index, the candidate points may not be separated by a fixed number of elements.

Thus, Gallet and Gowanlock are forced to page them into shared memory, adding an extra

step to their computation and also not making great use of GPU cache lines as candidate
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points are unlikely to be stored nearby in memory.

Similarly to TED-Join [38], when implemented into a distance similarity search algo-

rithm, META uses a grid indexing to prune the number of candidate points to refine. Given

that all the threads of the warps compute the same set of candidate points at the same time,

we reorder the dataset based on the grid indexing: for each cell, all the points are grouped

next to each other in memory. Hence, the padding we use to copy data from memory to

the fragment is always the same, which allows us to bypass the shared-memory paging step

reducing the number of registers required per thread, to benefit from greater cache hit rates,

thus greatly improving performance as we will show in Section 6.4.4.

6.3.5 Using META for Distance Similarity Self-Joins

The algorithm we propose in this paper, META, is an algorithm to compute Euclidean

distances, which are commonly used in data analytics applications. Thus, as mentioned

before, we select the distance similarity self-join problem as a real-world case study to further

evaluate the performance of META. TED-Join, proposed by Gallet and Gowanlock [38], is

itself on the GDS-Join algorithm proposed by Gowanlock and Karsin [44] when computing

distance similarity self-joins. Similarly, we base our version of META to compute distance

similarity self-joins on GDS-Join as well. Thus, further details can be found in the papers

from Gallet and Gowanlock [38] and Gowanlock and Karsin [44].

META uses a grid index to prune the number of distance calculations to compute. The

grid cells are ϵ-wide and, for a given query points, finding the candidate points consists of

looking for the points in the surrounding cells of the query point. Hence, within a cell, all

query points have the same set of candidate points to refine. When using META-1Q, each

warp is assigned one query point to compute, and will refine all the candidate points as

found when searching the index. Using META-16Q, each warp is assigned up to 16 query

points, all located within the same grid cell, so that they will have the same set of candidate

points to refine, as found when searching the index.
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Table 6.1: Exponentially distributed synthetic datasets used in the experimental evaluation.

Usage d n

Brute-force 16, 64, 128, 256 2{16,...,21}

Distance similarity self-join 8, 16, 32 2M

Table 6.2: Real-world datasets used in the experimental evaluation.

Dataset d n Dataset d n
SW3DA [69] 3 1.86M SuSy [11] 18 5M
BigCross [3] 57 11M Songs [18] 90 515K

6.4 Experimental Evaluation

6.4.1 Datasets

We evaluate the algorithms using a wide range of real-world and synthetic datasets,

spanning several sizes, dimensionalities, and distributions. Synthetic datasets are generated

following an exponential distribution, and their name is prefixed by Expo, followed by the

dimensionality and the number of points (Expo8D2M is thus an exponentially distributed

8-D dataset containing 2M points). We summarize the different synthetic datasets that we

use in Table 6.1, and the real-world datasets in Table 6.2. Note that some of the synthetic

datasets are used only for brute-force searches, in order to evaluate the performance of CUDA

and TCs when only computing Euclidean distances, while the rest of the datasets are used

to compute distance similarity self-joins and use the grid index presented above.

The selectivity s represents the average number of neighboring points of each query points

and found within ϵ when computing a distance similarity self-join, excluding the query points

finding themselves. We calculate s as follows: s = (|R| − |V |)/|V |, where R is the result

set (pairs of points within ϵ of each other) of the distance similarity self-join and V is the

dataset. The selectivity is often used to evaluate the complexity of the search according to

the value of ϵ, where increasing ϵ increases the selectivity and the amount of work (distance

calculations) computed.
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Table 6.3: Summary of implementation names across different levels of precision. The
suffixes are as follows: “hh” refers to multiplication and accumulation in FP16, “hs” refers
to multiplication in FP16 and accumulation in FP32, and “dd” refers to multiplication and

accumulation in FP64.

Algorithm Core Type FP16 FP16-FP32 FP64
META-1Q Tensor META-1Q-hh META-1Q-hs -
META-16Q Tensor - META-16Q-hs -
TED-Join Tensor - - TED-Join-dd
GDS-Join CUDA GDS-Join-hh GDS-Join-hs GDS-Join-dd

6.4.2 Methodology

We conducted our experiments on a platform containing 2× AMD Epyc 7542 CPUs

(2× 32 cores, 2.9GHz), 512 GiB of RAM, which is equipped with and an Nvidia A100 GPU.

In what follows we outline our algorithm implementations and their configurations. All

algorithms can compute in both brute force mode and distance similarity self-join mode. The

brute force mode demonstrates the raw performance of the TC vs. CUDA core algorithms

(META vs. GDS-Join). The distance similarity self-join demonstrates the performance

when the Euclidean distance calculations are embedded in a larger application. We use the

names outlined in Table 6.3 which specify the precision of the data types used in the suffix.

These implementations are described as follows.

• META: The TCs algorithm we propose in this paper, configured with 4 warps per

block, using the grid index, distances short-circuiting and dataset reordering optimiza-

tions presented above. The two variants of META are META-1Q (Section 6.3.1) and

META-16Q (Section 6.3.2).

• GDS-Join: Parallel GPU CUDA cores distance similarity self-join algorithm pro-

posed by Gowanlock and Karsin [44]. The algorithm is configured to use 256 threads

per block, the grid index and the distance short-circuiting optimizations. For ex-

perimentation purposes, we also test using our dataset reordering technique to this

algorithm. GDS-Join is capable of computing in either FP16 (GDS-Join-hh), mixed
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FP16-FP32 (GDS-Join-hs) or FP64 (GDS-Join).

• TED-Join: Parallel TCs algorithm to compute Euclidean distances, incorporated into

GDS-Join by Gallet and Gowanlock [38] to compute distance similarity self-joins.

The algorithm uses 4 warps per block, the grid index and the distance short-circuiting

optimizations from GDS-Join. We did not add the reordering dataset optimization

to TED-Join. Finally, TED-Join is only capable of computing using FP64.

The algorithms are compiled using NVCC v11.2 and the O3 optimization. The reported

execution times are averaged across three executions. We use the Nvidia Nsight Compute

profiler to understand the performance characteristics of the algorithms and identify potential

bottlenecks. Note that we do not use any CPU algorithm, as there are none capable of using

FP16 data types.

6.4.3 Brute-Force Performance

We evaluate and compare the performance of only computing Euclidean distances using

CUDA and TCs, i.e., using the GDS-Join and META algorithms. Focusing on Euclidean

distances only allows us to address the raw performance of CUDA and TCs, as the algorithms

do not perform operations other than minor host-side tasks. When computing brute-force

searches, the overall complexity is O(|V |2). Because META-16Q can only use mixed FP16-

FP32 precision, we evaluate META-1Q and GDS-Join using mixed precision as well.

Figure 6.2 plots the response time of META-1Q, META-16Q and GDS-Join when

computing brute-force searches, on exponentially distributed synthetic datasets where d =

16, 64, 128, 256 and using mixed FP16-FP32 precision. We observe that the CUDA cores are

consistently more efficient than META-1Q, while META-16Q is consistently outperform-

ing GDS-Join. We explain this by the naturally higher throughput of TCs than CUDA

cores, and by the fact that META-1Q does not make use of all the computational through-

put capabilities of the GPU, as explained in Section 6.3.1. We profile these algorithms on
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Figure 6.2: Response time of META-1Q and META-16Q versus GDS-Join, using
brute-force searches to compute Euclidean distance calculations on a selection of

exponentially distributed synthetic datasets and as a function of the dataset size |V |. The
computation uses mixed FP16-FP32 precision.

the datasets going up to 220 points using the Nvidia Nsight Compute profiler. The Nvidia

A100 is equipped with 40 MB of L1 cache, and Figure 6.2 shows the input sizes that can fit

entirely in L1 cache, as denoted by the shaded green area.

We observe that as the datasets exceed the cache capacity, the META-16Q brute-

force algorithm outperforms both GDS-Join and META-1Q, and GDS-Join outperforms

META-1Q. Additionally, we measure that META-1Q transfers a significantly higher vol-

ume of data than the two other algorithms: for 16 candidate points copied for the META-

16Q algorithm, up to 256 Euclidean distances are computed vs. just 16 for the META-1Q

algorithm, which results in more data copies.

We report profiler results in Table 6.4, collected on the 220 points 64-D dataset (Fig-
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Table 6.4: Profiling results of brute-force GDS-Join, META-1Q and META-16Q using
mixed FP16-FP32 computation on the 220 points 64-D synthetic dataset.

Metric GDS-Join-hs META-1Q-hs META-16Q-hs
Global to L2 5.32 GB 100.82 TB 2.14 TB
L2 to L1 545.45 GB 135.43 TB 12.04 TB
L2 Hit Rate 99.60% 57.38% 83.53%
L1 Hit Rate 99.24% 52.63% 49.81%

ure 6.2(b)). These results show that META-1Q suffers from low cache performance and

many accessed data. DespiteGDS-Join having better metrics thanMETA-16Q: 550.77 GB

vs. 14.18 TB data accessed and 99.24% vs. 49.81% L1 cache hit rate, META-16Q performs

better due to the higher computational throughput of TCs. This experiment shows that an

efficient TCs algorithm yields a higher computational throughput than CUDA cores, despite

having more and potentially irregular memory accesses. On average, META-1Q achieves

a slowdown of 0.53× over GDS-Join, while META-16Q achieves a speedup of 5.65× and

2.32× compared to META-1Q and GDS-Join, respectively.

6.4.4 Dataset Reordering Performance

The dataset reordering optimization proposed in Section 6.3.4 aims to improve locality

by storing points in the same grid cell contiguously in memory. We measure the efficiency

of this optimization on META-1Q, META-16Q and GDS-Join using mixed FP16-FP32

precision.

Figure 6.3 plots the speedup of using the reordering dataset optimization (Section 6.3.4)

on the META-1Q, META-16Q and GDS-Join algorithms on a selection of exponentially

distributed synthetic datasets. This optimization is highly beneficial to META-1Q and

META-16Q but significantly reduces the performance of GDS-Join. When using this

optimization, GDS-Join yields a slowdown of between 0.86× and 0.97×, while META-

1Q and META-16Q achieve a speedup between 1.24× and 1.43×, and 1.20× and 1.28×,

respectively. Hence, this dataset reordering optimization always yields a slowdown for GDS-

Join and a speedup for META.
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Figure 6.3: Speedup of META-1Q, META-16Q and GDS-Join using the reordering
dataset optimization, and using mixed FP16-FP32 precision on a selection of exponentially

distributed synthetic datasets.

We profile the three algorithms to understand the performance impacts of this optimiza-

tion. For GDS-Join, we were not able to pinpoint a metric that could explain the slowdown,

as profiling with and without the sorting optimization yielded very similar results. Regarding

META-1Q and META-16Q, using this optimization reduces both the number of registers

required per thread and the amount of shared memory that is used. Consequently, this

increases the occupancy as well as the active number of warps per GPU multiprocessor, thus

making better use of the resources.

6.4.5 Catastrophic Cancellation

We present here a concrete example of catastrophic cancellation we observed during our

experimental evaluation. Let q be the first point of the SuSy dataset. We compute the

distance between q and itself, which is a common operation when computing a distance

147



Table 6.5: Example of the catastrophic cancellation problem when computing the distance
between the first point from the SuSy dataset (Table 6.2) and itself.

Formula FP16 FP16-FP32 FP64√∑18
i=1(qi − qi)2 0.0 0.0 0.0√∑18
i=1 q

2
i − 2qiqi + q2i

√
−0.000295 0.0 0.0

similarity self-join for example. Mathematically, the distance between q and itself equals

0.0. We report in Table 6.5 the distance calculated using different precisions, and using

the Euclidean distance formulas presented in Section 6.2.1. Note that while we show the

result using CUDA cores, we would measure similar results using TCs. As mentioned above,

only the expanded formula and when using only FP16 causes catastrophic cancellation to

happen. Consequently, we are not able to propose an FP16-only version of our META-16Q

algorithm.

6.4.6 Accuracy of FP16, FP16-FP32, and FP64

Increasing the precision of the computation also increases its cost: it is computationally

more expensive to compute in FP64 than in FP32, and in FP32 than in FP16, and so

on. Higher precision data types should yield a more accurate result which, under some

circumstances, can be more important than execution time alone. We thus compare the

performance of using FP16 only against using mixed FP16-FP32. Note that we only test

META-1Q and GDS-Join, as META-16Q can only compute using mixed precision.

Figure 6.4 plots the speedup of using FP16 over mixed FP16-FP32 precision, using the

META-1Q and GDS-Join algorithms on a selection of datasets (Tables 6.1 and 6.2). As

one could expect, using FP16 typically yields better performance compared to using mixed

FP16-FP32 precision. However, the speedups are relatively moderate: between 1.00× and

1.18× for GDS-Join, and between 0.96× and 1.18× for META-1Q.

We report in Table 6.6 the accuracy ratio of GDS-Join, META-1Q and META-16Q

across several precisions, as compared to GDS-Join using FP64, which is the ground truth
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Table 6.6: Accuracy ratio of the GDS-Join, META-1Q and META-16Q algorithms as
compared to the result of GDS-Join using FP64 when computing the distance similarity
self-join. The percentage p = (1− (||Rref | − |Rcomp||)/|Rref |) ∗ 100 where Rref is the result
set (the set of result pairs) returned by GDS-Join using FP64 and Rcomp is the result set

returned by the comparison algorithm.

Rcomp FP16
Dataset GDS-Join-hh META-1Q-hh
SW3DA 99.85% 99.86%
SuSy 99.66% 99.92%
BigCross 99.88% 99.79%
Songs 96.86% 95.04%
Expo8D2M 99.80% 99.82%
Expo16D2M 99.54% 99.54%
Expo32D2M 99.19% 99.23%

Rcomp FP16-FP32
Dataset GDS-Join-hs META-1Q-hs META-16Q-hs
SW3DA 99.93% 99.94% 99.64%
SuSy 99.60% 99.71% 99.70%
BigCross 98.17% 99.97% 95.68%
Songs 97.02% 95.35% 98.32%
Expo8D2M 99.93% 100.0% 99.94%
Expo16D2M 99.88% 100.0% 99.87%
Expo32D2M 99.71% 99.95% 99.68%

Rcomp FP64
Dataset GDS-Join-dd TED-Join-dd
SW3DA 100.0% 99.97%
SuSy 100.0% 100.0%
BigCross 100.0% 100.0%
Songs 100.0% 100.0%
Expo8D2M 100.0% 100.0%
Expo16D2M 100.0% 100.0%
Expo32D2M 100.0% 100.0%

implementation. We find that, overall, using a low precision such as FP16 to compute

Euclidean distances yields a very high accuracy compared to mixed FP16-FP32 and even

FP64. For example, on FP16, the lowest accuracy is on Songs, where we obtain a 95.04%

accuracy compared to using GDS-Join with FP64. In 6 of 7 datasets (excluding Songs),

we obtain over 99% accuracy with FP16. Interestingly, comparing FP16 to FP16-FP32
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for META-1Q the accuracy improves on 6 of 7 datasets (excluding SuSy). Furthermore,

META-1Q typically achieves a better accuracy compared to GDS-Join FP64 than GDS-

Join-hh or GDS-Join-hs. On the TC algorithms, we find that the accuracy improves as we

increase the precision of the data types. Therefore, using a lower precision datatype such as

FP16 or FP16-FP32 is dependent on the application. If the application can tolerate some

loss of accuracy, it may be worthwhile to trade accuracy for performance, since low precision

data types are more efficient (Figure 6.4).

6.4.7 Algorithm Performance Comparisons

We compare in this section the performance of the three algorithms: META-1Q,META-

16Q and GDS-Join. Because the dataset reordering optimization is only beneficial to

META-1Q and META-16Q, we do not use this optimization for GDS-Join. For compar-

ison purposes, all three algorithms use mixed FP16-FP32 precision.

We show in Figure 6.5 the execution time of GDS-Join, META-1Q and META-

16Q using mixed FP16-FP32 and GDS-Join and TED-Join using FP64 on a selection

of datasets (Tables 6.1 and 6.2). GDS-Join and TED-Join do not use the reordering

dataset optimization, while META-1Q and META-16Q do. We see that META-1Q is

able to perform better than GDS-Join, particularly when ϵ increases and the total num-

ber of distance calculations as well, and outperforms META-16Q as well when in lower

dimensions (Figure 6.5(a) and (e)). Regarding META-16Q, it consistently outperforms

GDS-Join in all scenarios. We report in Table 6.7 the minimum, maximum and average

speedup of META-1Q and META-16Q over GDS-Join using mixed FP16-FP32. On

average, both META-1Q and META-16Q outperform GDS-Join. Finally, and as we

could expect, our mixed FP16-FP32 tensor algorithms typically perform better than FP64

algorithms, as the workload of lower precisions (here mixed FP16-FP32) is lower than when

using higher precisions (here FP64).

Using the Nvidia Nsight Compute profiler, we observe that the major difference between
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Table 6.7: Minimum, maximum and average speedup of META-1Q and META-16Q vs.
GDS-Join using mixed FP16-FP32 precision, as well as GDS-Join and TED-Join using

FP64, on the same selection of datasets as shown in Figure 6.5.

GDS-Join-hs
Speedup META-1Q-hs META-16Q-hs
Min 0.30× 0.66×
Max 5.38× 2.74×
Avg 1.38× 1.46×

GDS-Join-dd
Speedup META-1Q-hs META-16Q-hs
Min 0.43× 0.77×
Max 6.45× 4.86×
Avg 1.66× 1.80×

TED-Join-dd
Speedup META-1Q-hs META-16Q-hs
Min 0.59× 0.80×
Max 2.94× 3.92×
Avg 1.20× 1.52×

META-1Q and META-16Q is that, in lower dimensions, META-16Q is limited by its

higher register usage, which is compensated in higher dimensions by the higher number of

Euclidean distances to compute and its ability to compute up to 16× more distances at a

time than META-1Q.

6.5 Discussion and Conclusion

This paper presents the first low precision Euclidean distance algorithm for TCs, which

are used as a building block for many algorithms, such as nearest neighbor searches or

clustering. We propose two variants of META, including META-1Q, which computes the

Euclidean distance between 1 point and 16 other points in either FP16 or mixed FP16-FP32;

and, META-16Q, which computes the Euclidean distance between up to 16 points and 16

other points, but only in mixed FP16-FP32 precision. We illustrated the performance of the

algorithm in the brute-force context, where many distance calculations need to be computed,
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which is often the case when computing forces between bodies in a scientific simulation [28].

We also presented a case study application for META by incorporating it into an existing

state-of-the-art distance similarity self-join algorithm for the GPU that uses CUDA cores

(GDS-Join).

We evaluated META-1Q and META-16Q against GDS-Join. Across a broad range of

datasets spanning several dimensionalities, sizes and distributions, we observe that META-

16Q consistently outperforms GDS-Join (the CUDA core algorithm), whether the algo-

rithms use brute-force searches (Figure 6.2) or an index (Figure 6.5). META-1Q is usually

outperformed by both META-16Q and GDS-Join, except in lower dimensions (d ≤ 8),

where it is the most efficient algorithm. In summary, META is generally more efficient than

GDS-Join: the META-1Q variant should be used when d ≤ 8, and META-16Q should

be used otherwise.

We evaluated using FP16 instead of mixed FP16-FP32, both in terms of performance

and accuracy. We find that using FP16 only has a marginal impact on the accuracy of

the computation compared to FP16-FP32, while using FP16 is only marginally faster than

FP16-FP32. Consequently, it is not clear whether FP16 or FP16-FP32 should be used in

the case where an algorithm can tolerate minimal losses to accuracy.

Future plans include implementing META into other data-analysis applications, such

as nearest neighbor searches or clustering. Furthermore, because TCs and CUDA cores are

physically distinct, we believe that concurrently leveraging these two processors to compute

Euclidean distances should further improve performance, but this remains to be investigated.

Our literature review showed that using TCs for increasingly general-purpose computations

is still relatively rare; therefore, we believe that there are many research avenues for the

community to investigate in this area.
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Figure 6.4: Execution time ratio of META-1Q and GDS-Join using FP16 over mixed
FP16-FP32 on a selection of datasets presented in Tables 6.1 and 6.2.
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FP16-FP32, and GDS-Join and TED-Join using FP64, on a selection of datasets
(Table 6.1 and 6.2. META-1Q and META-16Q are using the dataset reordering

optimization.
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Chapter 7

Discussion & Conclusion

Computing distance similarity searches, and more generally Euclidean distances, is a

significant performance bottleneck in many algorithms. Thus, optimizing the performance of

these relatively basic yet important operations that are building blocks for other algorithms is

essential to improve the performance of these algorithms. Furthermore, computing platforms

evolved to be increasingly heterogeneous, particularly with the addition of accelerators such

as GPUs or ASICs within GPUs. Hence, optimizations for distance similarity searches

and Euclidean distance calculations must carefully consider the architectural constraints of

target platforms. We showed throughout this dissertation that this can be challenging. We

summarize these challenges below.

• CPUs and GPUs have very different architectural characteristics. Consequently, an

algorithm developed and optimized for the CPU is unlikely to work as well on the

GPU, and vice versa. Hence, as a single algorithm should not be used on these different

architectures, it is necessary to two develop two distinct versions, and the associated

optimizations should be suited to each architecture.

• GPUs typically have a significantly higher peak computational throughput than CPUs.

As such, it appears more interesting, in terms of performance, to develop a parallel

algorithm for the GPU than it is for the CPU. However, designing a GPU algorithm

leaves the CPU underutilized. When using both the CPU and GPU, we need to
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determine to which architecture each part of the computation should be assigned to,

based on the characteristics of the architectures. Particularly, if we consider that

the GPU has a higher computational throughput than the CPU, then it should be

assigned more work. However, in the case of algorithms with irregular workloads, such

as computing multiple distance similarity searches where the different query points

have varying workloads, then it can be challenging to (i) estimate the workload to

compute, and (ii) assign it to the processor that is likely to yield a balanced workload.

• GPU architectures have significantly improved in recent years, particularly with the

introduction of specific-purpose cores, in addition to the general-purpose CUDA cores

already present. Leveraging these specific-purpose cores, such as TCs, may greatly

improve performance of the algorithm. However, such algorithms may require sub-

stantial modifications to adapt to these very specific architectures. And, because of

their recent introduction to GPUs, it can be challenging to find reliable information

regarding their operation. Furthermore, many proposed work in the literature that

were once state-of-the-art algorithms have the potential to be further improved now

by using such novel cores.

7.1 Summary of Contributions

The work we propose in this dissertation are detailed in Chapters 3 to 6, and that we

summarize in Table 7.1 and the sections below:

7.1.1 Load Imbalance Mitigation Optimizations for GPU-Accelerated Similar-

ity Joins

Chapter 3 consists of a peer-reviewed publication [35], where we proposed several opti-

mizations to an existing state-of-the-art GPU distance similarity search algorithm. Note that

while this publication makes several contributions, we only summarize here the contributions
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Table 7.1: Summary of the contributions of this dissertation, sorted by processor
(CPU/GPU) and by examined algorithm: Distance Similarity Searches (DSS) or Euclidean

Distances (ED).

Chapter CPU CUDA TCs DSS ED Main contributions
Chapter 3 ✓ ✓ Intra- and inter-warp workload balancing.
Chapter 4 ✓ ✓ ✓ Heterogeneous CPU-GPU algorithm,

both processors computing DSS.
Chapter 5 ✓ ✓ Using TCs to compute FP64 ED.
Chapter 6 ✓ ✓ Using TCs to compute FP16 and mixed

FP16-FP32 ED.

that were conducted during the completion of this dissertation.

The most significant contribution of this chapter is the improved resource utilization

of the distance similarity search GPU algorithm. As previously stated, when computing

distance similarity searches, the query points are extremely likely to have different workloads.

By default, the GPU algorithm assigns a query point to a GPU thread, regardless of this

particularity. Hence, as GPU threads are grouped in warps (32 threads) starting and ending

their execution at the same time, some threads were executing for a longer period of time

than other threads of the warp, because they were assigned query points with a higher

workload to compute. By using the grid indexing method already implemented, we were

able to efficiently calculate the workload of the query points with very minimal overhead.

With this information, we then designed a queue mechanism, where query points are sorted

by their workload, and where the threads of a warp are assigned contiguous points from

the queue. Thus, the query points assigned to a warp all have a very similar workload and

thus have minimal variance in their workload. Consequently, the threads of a warp are more

likely to end their work at the same time, improving their overall utilization (as measured

with the warp execution efficiency metric discussed in this chapter), and incidentally the

performance as well.

This solution to the workload imbalance problem was revealed to have very minimal

overhead, while greatly improving performance. As such, this optimization was used in

every subsequent algorithm we designed and presented in this dissertation. More particularly,
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this solution to the workload balancing problem was key to the heterogeneous CPU-GPU

algorithm we proposed in Chapter 4 and that we summarize in the following section.

7.1.2 Heterogeneous CPU-GPU Epsilon Grid Joins: Static and Dynamic Work

Partitioning Strategies

Chapter 4 consists of two peer-reviewed publications [36, 37], where we proposed a het-

erogeneous CPU-GPU distance similarity search algorithm, and where we explored several

methods to partition the work between the processors, while leveraging the workload bal-

ancing mechanism developed in Chapter 3.

We explained throughout this dissertation the main differences between CPUs and GPUs,

describing the importance of using both when possible, while also highlighting the issues re-

lated to leveraging heterogeneous architectures. Among the issues, having the best algorithm

for each architecture is essential to get the best performance possible. Hence, a single and

optimized algorithm can not be used, due to it being specific to a single architecture. Conse-

quently, we proposed to combine two existing algorithms: the state-of-the-art parallel CPU

algorithm Super-EGO [57], and the GPU algorithm we proposed in Chapter 3. By doing

this, we were able to get the best performance possible on the CPU and GPU. We slightly

modified Super-EGO to be consistent with our GPU algorithm. We then reworked both

algorithms using the queue mechanism that was originally designed for the GPU algorithm,

which we migrated to the host so the CPU algorithm could use it as well. Using this queue,

both the CPU and GPU are assigned work on-demand. Remember that the query points in

the queue are sorted by their workload. Hence, because the GPU is typically significantly

more efficient than the CPU, the algorithm starts by assigning the most computationally

expensive query points (i.e., the ones at the start of the queue) to the GPU, and the least

computationally expensive (i.e., those at the end of the queue) to the CPU.

The other main issue of the heterogeneous CPU-GPU algorithm for distance similarity

searches is the different computational throughput of both architectures and the irregular

159



workload of the problem itself. Hence, we explored several workload partitioning solutions in

an attempt to find the most efficient one. We tried two main methods: dynamic and static

work partitioning. The dynamic partitioning method consists of having both the CPU and

GPU request query points to compute from the queue until it is empty. The challenge here

is to assign chunks that are neither too big to ensure a relative workload balance between

the processors, but also large enough to saturate GPU resources in particular. The second

method we explored is static partitioning, where the workload of each processor is first

determined at runtime, based on their proportional estimated computational throughput.

Using this method, we also explored two approaches: partitioning based on the total number

of query points but making no assumptions on their actual workloads, and partitioning based

on the workload of the query points. Thus, if we consider that the GPU corresponds to 80%

of the performance of a platform and the CPU 20%, in the first case we would attribute

80% of the query points to the GPU, and 20% to the CPU. In the second case, we would

attribute 80% of the total workload to the GPU, which could correspond to 20% of the query

points for example, depending on their respective workload (i.e., 20% of the query points

account for 80% of the total work to compute, while 20% of the total work to compute might

account for 80% of the query points). Across a broad range of experiments, we observed

that the dynamic partitioning method is typically the most efficient, as it does not need

to make assumptions about the throughput of the architectures. We then find that the

static partitioning based on the query points performs the worst on average, as it can not

accurately estimate the entire workload to compute.

This heterogeneous CPU-GPU distance similarity search algorithm leveraged two ex-

isting state-of-the-art algorithms, including one we proposed in Chapter 3, and explored

different work partitioning strategies. Overall, this algorithm was able to alleviate the most

important issues of heterogeneous CPU-GPU algorithms: have an efficient algorithm for

each architecture, and efficiently partition the work, while making better overall usage of

compute resources than other existing algorithms.
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7.1.3 Leveraging GPU Tensor Cores for Double Precision Euclidean Distance

Calculations

Chapter 5 consists of a peer-reviewed publication [38], where we propose to leverage TCs,

recently added to GPUs, to compute Euclidean distances and that we apply to compute

distance similarity searches as well.

TCs are specific-purpose cores that are equipped on several recent generations of GPUs

and are designed to compute MMA operations, with significantly higher throughput than

if the operation was computed using general-purpose (CUDA) cores. Despite their high

specificity and that they are heavily marketed for machine learning and related fields, any

computation that can be expressed as MMA operations can leverage TCs, which may yield

improved performance. As such, we investigated using TCs to compute Euclidean distances

in lieu of the general-purpose CUDA cores as we did in the previously proposed GPU algo-

rithms.

Using the WMMA API for FP64 computations, we used 8× 4 and 4× 8 matrices for the

product part of the MMA, and 8×8 matrices for the accumulation (as restricted by the API).

As we explained in Chapter 5, we used the expanded form of the Euclidean distance (Equa-

tion 2.2) to alleviate the restrictions of the matrix sizes and the usual Euclidean distance

formula (Equation 2.1). Because the formula we use is not a perfect balance of additions and

multiplications, we optimize the overall computation by pre-computing the squared terms

in the formula (a2 and b2). Furthermore, because the number of accumulations is greater

than the number of multiplications, we use CUDA cores to perform those additional accu-

mulations rather than TCs, where we would have to perform unnecessary multiplications

as well (as part of an MMA operation). As such, our algorithm can compute, per warp,

the Euclidean distance between up to 8 query points and 8 candidate points, 4 dimensions

at a time, achieving a good performance improvement in lower dimensional cases (typically

d ≤ 8), with a precision similar to using CUDA cores.
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7.1.4 Optimizing Euclidean Distance Calculations in Low Precision with GPU

Tensor Cores

Chapter 6 consists of a manuscript currently under review at the time of writing, where we

propose to build upon the previous publication [38] presented in Chapter 5 and summarized

in Section 7.1.3, to propose several TC algorithms to compute Euclidean distances but using

a lower precision than before (FP16 and mixed FP16-FP32 instead of FP64).

The TCs algorithm presented in Chapter 5 is only capable of computing Euclidean dis-

tances using FP64, which is not available on every Nvidia GPU possessing TCs, contrary

to FP16 and mixed FP16-FP32 precision that are found on a wider range of devices. Using

the previous algorithm as a starting point, this low precision algorithm uses 16× 16 matri-

ces, which allows us to use both the common and the expanded Euclidean distance formula

(Equations 2.1 and 2.2). The expanded formula allows a single warp to compute the Eu-

clidean distance between up to 16 query points and 16 candidate points, in 16 dimensions at

a time. Using the regular formula, the number of query points is reduced to only 1 (instead

of 16). As we would expect, the 16 query point version typically performs better than the 1

query point version. Furthermore, we measured that using lower precision TCs still obtains

high precision compared to FP64, while also achieving better performance.

7.2 Future Perspectives

As we show in Section 7.1 and in Table 7.1, we identify several research paths worth

exploring and that we present below.

7.2.1 Further Tensor Core Optimizations

The TC algorithms we propose and that use low precisions use 16×16 matrices. However,

the WMMA API provides several other matrix sizes to use with FP16 and mixed FP16-FP32,

which should be explored to determine if changing the matrix size impacts performance.
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7.2.2 Heterogeneous CUDA-Tensor Euclidean Distance Calculations

In a GPU, CUDA and TCs are physically distinct. Because there are significantly more

CUDA cores than TCs, an algorithm that essentially uses TCs is unlikely to make efficient

and constant use of CUDA cores. Consequently, a compelling future work direction is a

heterogeneous GPU-GPU algorithm that would concurrently use both CUDA and TCs to

compute Euclidean distances.

Several options should be explored to determine the most efficient method, including:

• Use independent CUDA and TC kernels and use an appropriate number of threads

for each, expecting both kernels to execute concurrently on a single GPU. However,

because it can be challenging to predict the actual kernel execution order, we may

not be able to achieve kernel concurrency, if the hardware scheduler considers that the

kernels can not execute at the same time.

• Use a single kernel, and split the total number of blocks in two, with blocks that will

be using CUDA cores and blocks that will use TCs. Because several blocks can be

executed concurrently, using a single kernel forces this concurrency.

• Use a single kernel, and split the total number of threads of each block in two, with

threads that will be using CUDA cores and threads that will use TCs. This solution

should be particularly interesting if, for example, we find that the threads of each

algorithm should communicate with the threads of the other algorithm, thus using

shared memory.

7.2.3 Performance Modeling of Euclidean Distance Calculations for CUDA and

Tensor Cores

Similarly to the modeling we did for the heterogeneous CPU-GPU algorithm to split the

work between the two architectures, we would here model the performance of using CUDA

and TCs to compute Euclidean distances. This modeling could then be used to (i) better
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understand the performance intrinsics of both types of cores, and (ii) better partition the

work between CUDA and TCs. Using the future work presented in Section 7.2.2, while

the simple solution would be to equivalently divide the work in two and assign equivalent

workloads to the CUDA and TCs, modeling the performance of these cores would allow us

a finer tuning, and allocate a different number of threads/blocks, with the expectation of

yielding better performance.

7.2.4 Exploring Novel Architecture Features

GPU Ray Tracing Cores for Index Searches: Since the addition of TCs to certain

GPUs, another type of specific-purpose core was added to some GPUs: the Ray-tracing (RT)

core. These cores are designed to greatly improve the performance of RT algorithms and can

execute two tasks. Using a Bounding Volume Hierarchy (BVH) structure on the objects of

the scene, RT cores are used to first search the BVH structure, and then determine if a ray

intersects any volume.

Using a similar BVH structure to index multidimensional points, we could use the RT

cores to search this structure, cast a ray, and determine the adjacent volumes and the points

they contain for which we should compute Euclidean distances. From there, we would

leverage one of our Euclidean distance calculation algorithms we proposed, or that we plan

to propose in the future including the CUDA-Tensor algorithm.

CPU Matrix Extensions for Euclidean Distance Calculations: Similarly to the

addition of TCs on recent GPUs, CPUs are also starting to get equipped with accelerators

specifically made for matrix operations. Similarly to the intrinsic functions [55] one can use

to leverage the vectorization capabilities of most CPUs (i.e., to work on vectors), Intel is

proposing a new set of extensions: the Advanced Matrix Extensions (AMX) [54]. While

this new functionality is targeted for machine learning applications, similarly to the GPU

TCs, we believe this novel option could be leveraged for other general-purpose applications,

similarly to our GPU TC research (Chapters 5 and 6). By designing a new and efficient CPU
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algorithm working on matrices such as this one, we could then propose another heterogeneous

CPU-GPU algorithm, similar to the one presented in Chapter 4.
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[20] Christian Böhm, Bernhard Braunmüller, Markus M. Breunig, and Hans-Peter Kriegel.

High Performance Clustering Based on the Similarity Join. Proceedings of the Interna-

tional Conference on Information and Knowledge Management, pages 298–305, 2000.

doi: 10.1145/354756.354832.
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